On the Iterated Duggal Transforms

Muneo Cho

Department of Mathematics, Kanagawa University, Yokohama 221-8686, Japan e-mail: chiyom01@kanagawa-u.ac.jp

Il Bong Jung*

Department of Mathematics, Kyungpook National University, Daegu 702-701, Korea e-mail: ibjung@knu.ac.kr

Woo Young Lee

Department of Mathematics, Seoul National University, Seoul 151-742, Korea e-mail: wylee@math.snu.ac.kr

ABSTRACT. For a bounded operator T = U|T| (polar decomposition), we consider a transform $\widehat{T} = |T|U$ and discuss the convergence of iterated transform of \widehat{T} under the strong operator topology. We prove that such iteration of quasiaffine hyponormal operator converges to a normal operator under the strong operator topology.

1. Introduction

Let \mathcal{H} be a separable, infinite dimensional, complex Hilbert space and let $\mathcal{L}(\mathcal{H})$ be the algebra of all bounded linear operators on \mathcal{H} . An operator $T \in \mathcal{L}(\mathcal{H})$ has the unique polar decomposition T = U|T|, where $|T| = (T^*\bar{T})^{1/2}$ and U is a partial isometry with initial space $(\operatorname{ran}|T|)^-$, the closure of the range of |T|, and final space $(\operatorname{ran} T)^-$, the closure of the range of T. The Aluthge transform $\widetilde{T} = |T|^{1/2}U|T|^{1/2}$, which was first studied in [1] and was applied to the study of the invariant subspace problem via the sequence $\{\widetilde{T}^{(n)}\}_{n\in\mathbb{N}}$ of Aluthge iterates of T, defined by $\widetilde{T}^{(1)}:=\widetilde{T}$ and $\widetilde{T}^{(n+1)} := (\widetilde{T}^{(n)})^{\sim}$ for $n \in \mathbb{N}$, in [8]. The problem whether Aluthge iteration of bounded operators on a Hilbert space \mathcal{H} is convergent was introduced in [8]. If dim $\mathcal{H} < \infty$, the Aluthge iteration converges to a normal operator (cf. [3], [2]). However, in general such iterations do not always converge under the strong operator topology (SOT) (cf. [4]). Moreover, the problem whether the hyponormal operators on \mathcal{H} with dim $\mathcal{H} = \infty$ has the Aluthge iteration converging to a normal operator in $\mathcal{L}(\mathcal{H})$ under the strong operator topology remains still open. In this paper we consider the transform $\widehat{T} = |T|U$, which is referred as the Duggal transform of T in

[5], and define $\widehat{T}^{(1)} := \widehat{T}$ and $\widehat{T}^{(n+1)} := \widehat{\widehat{T}^{(n)}}$, $n \in \mathbb{N}$, similarly.

Received July 10, 2009; accepted August 21, 2009.

2000 Mathematics Subject Classification: 47B49, 47B20.

Key words and phrases: Aluthge transform, hyponormal operator, quasiaffinity.

^{*} Corresponding author.

In this note we prove that if a quasiaffinity $T \in \mathcal{L}(\mathcal{H})$ is hyponormal, then the iteration of $\{\widehat{T}^{(n)}\}_{n\in\mathbb{N}}$ converges to a normal operator under SOT, whose spectrum is contained in the spectrum of T. In addition we give a sufficient condition with the iteration of $\{\widehat{T}^{(n)}\}_{n\in\mathbb{N}}$ for invariant subspaces for hyponormal operators in $\mathcal{L}(\mathcal{H})$.

2. Duggal iterations

We begin with some elementary properties, but sets forth basic relations between T and \widehat{T} that will be useful in the proofs below and the sequel research.

Basic properties (BP). Let T = U|T| (polar decomposition) be in $\mathcal{L}(\mathcal{H})$. Then the following statements hold.

- 1) $|T|T = \widehat{T}|T|$, $U\widehat{T} = TU$, $|T|^{\frac{1}{2}}\widetilde{T} = \widehat{T}|T|^{\frac{1}{2}}$, and $\widetilde{T}(|T|^{\frac{1}{2}}U) = (|T|^{\frac{1}{2}}U)\widehat{T}$.
- 2) T is a quasiaffinity if and only if |T| is a quasiaffinity and U is a unitary operator. And \widehat{T} is a quasiaffinity if T is. In this case, T and \widehat{T} are unitarily equivalent. Also, \widehat{T} and \widehat{T} are quasisimilar.
- 3) The transform $\widehat{\cdot}$: $\mathcal{L}(\mathcal{H}) \to \mathcal{L}(\mathcal{H})$ is SOT-continuous when restricted to the set of quasiaffinities.
- 4) $\sigma(T) = \sigma(\widehat{T})$, where $\sigma(\cdot)$ is the spectrum.
- 5) \widehat{T} is invertible if and only if \widetilde{T} is, and in this case, \widehat{T} and \widetilde{T} are similar.

The following theorem is contained in the main theorems of this paper.

Theorem 2.1. Suppose $T \in \mathcal{L}(\mathcal{H})$ is a quasiaffine hyponormal operator. Then the sequence $\{\widehat{T}^{(n)}\}_{n\in\mathbb{N}}$ converges in SOT to a normal operator \widehat{T}_L such that $\sigma(\widehat{T}_L) \subset \sigma(T)$, $\|\widehat{T}_L\| = \|T\|$, or equivalently, $r(\widehat{T}_L) = r(T)$, where $r(\cdot)$ denotes the spectral radius.

Proof. Suppose T = U|T| (polar decomposition), where U is a unitary operator (via BP 2)). Then $|\widehat{T}| = (U^*|T|^2U)^{\frac{1}{2}} = U^*|T|U$, and so \widehat{T} has the polar decomposition $\widehat{T} = U|\widehat{T}|$. Thus $\widehat{T}^{(2)} = |\widehat{T}|U = U^*|T|U^2$. By the mathematical induction we can see that

(1)
$$\widehat{T}^{(n+1)} = U^{*n}|T|U^{n+1} \text{ for } n \in \mathbb{N}_0 := \mathbb{N} \cup \{0\}.$$

On the other hand, if T = U |T| is hyponormal then $|T|^2 = T^*T \ge TT^* = U |T|^2 U^*$, and hence $|T| \ge U |T| U^*$, or equivalently,

$$(2) U^*|T|U > |T|.$$

From (2) we can see that $\{U^{*n}|T|U^n\}_{n\in\mathbb{N}}$ is a bounded increasing sequence of Hermitian operators. Therefore by the argument of [6, Prob. 120], $\{U^{*n}|T|U^n\}_{n\in\mathbb{N}}$ converges in SOT to a Hermitian operator H. Thus $\{\widehat{T}^{(n)}\}_{n\in\mathbb{N}}$ converges in SOT to HU, namely, \widehat{T}_L . In particular, since $U^*HU=H$ it follows that H commutes with U and therefore \widehat{T}_L is normal.

Towards the norm equality, since H is the SOT-limit of $\{U^{*n}|T|U^n\}_{n\in\mathbb{N}}$, by (2) we have that

$$U^{*n}|T|U^n \le H$$
 for $n = 0, 1, 2, \dots$,

and hence

$$\|\,|T|\,\|=\sup_{\|x\|=1}\langle|T|x,x\rangle\leq\sup_{\|x\|=1}\langle Hx,x\rangle=\|H\|.$$

Therefore

$$||T|| = ||U|T||| = |||T||| \le ||H|| = ||HU|| = ||\widehat{T}_L||.$$

On the other hand, recall ([7, Cor. 3]) that if $S, S_n \in \mathcal{L}(\mathcal{H})$, for $n \in \mathbb{N}$, are hyponormal operators such that S_n converges in SOT to S, then $\sigma_{ap}(S) \subseteq \liminf \sigma(S_n)$, where $\sigma_{ap}(\cdot)$ denotes the approximate point spectrum. Applying this result with $S_n = \widehat{T}^{(n)}$ and $S = \widehat{T}_L$, by BP 4) we have that

(3)
$$\sigma_{ap}(\widehat{T}_L) \subseteq \sigma(T)$$
 and so $\sigma(\widehat{T}_L) \subset \sigma(T)$.

Thus $r(\widehat{T}_L) \leq r(T)$. However since every hyponormal operator is normaloid, i.e., norm equals spectral radius, it follows that $\|\widehat{T}_L\| \leq \|T\|$. Therefore we can conclude that $\|\widehat{T}_L\| = \|T\|$, or equivalently, $r(\widehat{T}_L) = r(T)$.

In Theorem 2.1, the sequence $\{\widehat{T}^{(n)}\}\$ does not always converge in SOT without the condition of hyponormality (see Example 2.2 below).

Example 2.2. Let P be a positive quasiaffinity on \mathcal{H} with $2 \leq \dim \mathcal{H} \leq \infty$ and let $U \in \mathcal{L}(\mathcal{H})$ be unitary such that $|T|U \neq U^*|T|$ and $U^2 = 1$. Consider an operator T = UP. Then, by BP 2) T is quasiaffinity. Recall from (1) that $\widehat{T}^{(n+1)} = U^{*n}|T|U^{n+1}$ $(n \in \mathbb{N}_0)$, which implies that

$$\widehat{T}^{(n)} = \left\{ \begin{array}{ll} U^*|T| & \quad \text{if n is odd,} \\ |T|U & \quad \text{if n is even.} \end{array} \right.$$

Hence $\{\widehat{T}^{(n)}\}_{n\in\mathbb{N}}$ does not converge under SOT in $\mathcal{L}(\mathcal{H})$.

In Theorem 2.1 the property $\|\widehat{T}_L\| = \|T\|$ does not hold in general (see Proposition 2.3 below).

Proposition 2.3. Let $T \in \mathcal{L}(\mathcal{H})$ be a nilpotent operator of order $m \geq 2$. Then $(\widehat{T})^{m-1} = 0$ and $\widehat{T}^{(m-1)} = 0$. Therefore $\widehat{T}_L = 0$.

Proof. It follows from [9, Prop. 4.6] that $(\widetilde{T})^{m-1}=0$. Since $(\widehat{T})^{m-1}|T|^{1/2}=|T|^{1/2}(\widetilde{T})^{m-1}=0$, $(\widehat{T})^{m-1}=0$ on the space $(\operatorname{ran}|T|)^-$. And also, for $h\in ((\operatorname{ran}|T|)^-)^\perp$, obviously $(\widehat{T})^{m-1}h=0$. To prove the second part of this proposition, we will claim from the mathematical induction that if $T^k=0$, then $\widehat{T}^{(k-1)}=0$. For k=2, if $T^2=0$, then $\widetilde{T}=0$ (because, |T|U|T|=0, which implies from [9, Lem. 4.5] that $|T|^{1/2}U|T|^{1/2}=0$) and so, by BP 1), we have $\widehat{T}|T|^{1/2}=|T|^{1/2}\widetilde{T}=0$. Hence it is easy to see that $\widehat{T}=0$. Assume that the assertion holds for $2\leq k\leq m-1$.

Suppose $T^m=0$. Then, since $(\widehat{T})^{m-1}=0$, by the induction hypothesis, we have $\widehat{(\widehat{T})}^{(m-2)}=0$, i.e., $\widehat{T}^{(m-1)}=0$. Hence the proof is complete.

Remark 2.4. We don't know whether every hyponormal operator T in $\mathcal{L}(\mathcal{H})$ always has the Duggal iteration convergence \widehat{T}_L under SOT.

Acknowledgment. The first author was supported by Kakenhi No. 20540192 and the second author was supported by Kyungpook National University Research Fund, 2008.

References

- [1] A. Aluthge, On p-hyponormal operators for $0 , Integral Equations Operator Theory, <math>\mathbf{13}(1990)$, 307-315.
- [2] T. Ando and T. Yamazaki, The iterated Aluthge transforms of a 2-by-2 matrix converge, Linear Algebra Appl., 375(2003), 299-309.
- [3] J. Antezana, E. Pujals, and D. Stojanoff, Convergence of the iterated Aluthge transform sequence for diagonalizable matrices, Advances Math., 216(2007), 255-278.
- [4] M. Cho, I. Jung, and W. Lee, On Aluthge transforms of p-hyponormal operators, Integral Equations Operator Theory, 53(2005), 321-329.
- [5] C. Foias, I. Jung, E. Ko, and C. Pearcy, Complete contractivity of maps associated with the Aluthge and Duggal transforms, Pacific J. Math., 209(2003), 249-359.
- [6] P. R. Halmos, A Hilbert space problem book, 2nd ed., New York, 1982.
- [7] I. S. Hwang and W. Y. Lee, The spectrum is continuous on the set of p-hyponormal operators, Math. Z., 235(2000), 151-157.
- [8] I. Jung, E. Ko, and C. Pearcy, Aluthge transforms of operators, Integral Equations Operator Theory, 37(2000), 437-448.
- [9] I. Jung, E. Ko, and C. Pearcy, *The iterated Aluthge transform of an operator*, Integral Equations Operator Theory, **45**(2003), 375-387.