The Antioxidative and Neuroprotective Effect of Guibi-tang(Guipitang) and Guibi-tang gamibang(Guipitang jiaweijang) on PC12 cells.

귀비탕(歸脾湯)과 귀비탕가미방(歸脾湯加味方)의 항산화 효과 및 6-Hydroxydopamine에 대한 PC12 세포 보호효과 비교연구

  • Lim, Jae-Whan (Department of Neuropsychiatry, College of Oriental Medicine, Kyung-Hee University) ;
  • Kim, Jong-Woo (Department of Neuropsychiatry, College of Oriental Medicine, Kyung-Hee University) ;
  • Chung, Sun-Yong (Department of Neuropsychiatry, College of Oriental Medicine, Kyung-Hee University) ;
  • Cho, Sung-Hoon (Department of Neuropsychiatry, College of Oriental Medicine, Kyung-Hee University) ;
  • Oh, Myung-Sook (Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung-Hee University) ;
  • Hwang, Wei-Wan (Department of Neuropsychiatry, College of Oriental Medicine, Kyung-Hee University)
  • 임재환 (경희대학교 한의과대학 한방신경정신과 교실) ;
  • 김종우 (경희대학교 한의과대학 한방신경정신과 교실) ;
  • 정선용 (경희대학교 한의과대학 한방신경정신과 교실) ;
  • 조성훈 (경희대학교 한의과대학 한방신경정신과 교실) ;
  • 오명숙 (경희대학교 약학대학 한약학과) ;
  • 황의완 (경희대학교 한의과대학 한방신경정신과 교실)
  • Published : 2009.03.30

Abstract

Objectives : This Study was performed to assess the antioxidative and neuroprotective effect of Guibi-tang(Guipi-tang) and Guibi-tang gamibang(Guipitang jiaweifang) on PC12 cells. Methods : The antioxidative effect was investigated through the DPPH radical and ABTS cation scavenging methods and total polyphenol amount of Guibi-tang(Guipitang) and Guibi-tang gamibang(Guipitang jiaweifang). The neuroprotective effect of Guibi-tang(Guipitang) and Guibi-tang gamibang(Guipitang jiaweifang) was assessed using MTT assay in PC12 cells. The scavenging effect of Guibi-tang(Guipitang) and Guibi-tang gamibang(Guipitang jiaweifang) on NO and ROS production induced by 6-OHDA in PC12 cells was evaluated, as well as the attenuating effect of Guibi-tang gamibang(Guipitang jiaweifang) on GSH reduction. Results : 1. Guibi-tang(Guipitang) and Guibi-tang gamibang(Guipitang jiaweifang) had concentration-dependent scavenging activities of DPPH radical 2. Guibi-tang(Guipitang) and Guibi-tang gamibang(Guipitang jiaweifang) had concentration-dependent scavenging activities of ABTS cation. 3. Total polyphenol amount of Guibi-tang(Guipitang) and Guibi-tang gamibang(Guipitang jiaweifang) was calculated 79.10${\pm}$2.20 pg/IO mg and 121.03${\pm}$1.11 pg/IO mg, respectively. 4. Cell viability of Guibi-tang(Guipitang) was increased in a dose dependent manner. Guibi-tang gamibang(Guipitang jiaweifang) was increased at low concentrations, but decreased at high concentrations. 5. In Guibi-tang(Guipitang), cell viability of PC12 cell treated with 6-OHDA was decreased by pre-treatment, and increased by post- and co- treatment. Cell viability of Guibi-tang gamibang(Guipitang jiaweifang) showed variable effects by pre-treatment, but increased by post- and co- treatment. 6. NO production rate of Guibi-tang(Guipitang) didn't show a significant effect, but that of Guibi-tang gamibang(Guipitang jiaweifang) was decreased in a dose dependent manner. 7. ROS production rate of Guibi-tang(Guipitang) was decreased at some concentrations. In Guibi-tang gamibang(Guipitang jiaweifang), ROS production rate was decreased at high concentrations. 8. Guibi-tang gamibang(Guipitang jiaweifang) protected the 6-OHDA-induced GSH reduction. Conclusions : These results demonstrate that both Guibi-tang(Guipitang) and GBTGMB have antioxidative and neuroprotective effect, but Guibi-tang gamibang(Guipitang jiaweifang) has more antioxidative and neuroprotective effect than Guibi-tang.

Keywords

References

  1. 최병기, 정세영, 박광식, 조정희. 활성산소와 질환. 서울:신일상사. 2004:3
  2. Stadtman ER. Protein oxidation and aging. Science. 1992;257(5074):120-4.
  3. Gutteridge JM, Halliwell B. Comments on review of free radicals in biology and medicine. Free Radicals in biology and medicine. 1992;12(1):93-5. https://doi.org/10.1016/0891-5849(92)90062-L
  4. Halliwell B, Gutteridge JM. Oxidative stress and disease. Free radicals in biology and medicine. Oxford:Oxford University Press. 2000:617-783.
  5. Yagi, K. Lipid peroxides and human disease. Chem. Phys. Lipids. 1987;45:337. https://doi.org/10.1016/0009-3084(87)90071-5
  6. Kikuchi S, Kim SU, Glutamate neurotoxicity in mesencephalic dopaminergic neurons in culture. J Neuosci Res. 1993;36:558-69. https://doi.org/10.1002/jnr.490360508
  7. Adelson R, Saul RL, Ames BN. Oxidative damage to DNA: Relation to species metabolic and life span. Natl Acad Sci USA. 1998;85:2706-8. https://doi.org/10.1073/pnas.85.8.2706
  8. Bendich A, Machlin LJ, Scadurra O, Burton GW. DDM : The antioxidant role of vitamin C. Free Radical Biol Med. 1986;2:419-44. https://doi.org/10.1016/S8755-9668(86)80021-7
  9. Christian Bhel. Alzheimer's disease and Oxidative stress, Progress in Neurobiology. 1999;57:301-23. https://doi.org/10.1016/S0301-0082(98)00055-0
  10. Eckert A, Keil U, Marques CA, Bonert A, Frey c, Schussel K, Muller WE. Mitochondrial dysfunction , apoptotic cell death, and Alzheimer's disease. Biochem Parm. 2003;66(8):1627-34. https://doi.org/10.1016/S0006-2952(03)00534-3
  11. 양준영. 6-OHDA에 의해 유도된 파킨슨질 환 동물 모델에서 GAPDH 단백질의 변화 에 대한 연구. 연세대학교 대학원. 2004.
  12. 嚴用和. 濟生方. 北京:人民衛生出版社. 1980:117.
  13. 薛己. 內科摘要. 江蘇:江蘇科學技術出版社. 1985:41-2.
  14. 許浚. 東醫寶鑑. 서울:南山堂. 1966:47.
  15. 강순수. 바른방제학. 서울:대성문화사. 1996:190-1.
  16. 동의과학원. 동의처방대전. 서울:여강출판사(1). 1993:114.
  17. 윤용갑. 東醫方劑와 處方解說. 서울:의성당. 2002:631-5.
  18. 윤길영. 동의임상방제학. 서울:명보출판사. 1992:516.
  19. 박선동, 박현준, 주왕석. 歸脾湯및 그 構成 藥物群이 抗酸化 效果에 미치는 영향. 대한본초학회지. 2001;16(1):11-27.
  20. 박찬원, 이진우, 채한, 홍무창, 신민규. 脾 機能이 學習과 記憶에 미치는 影響에 대한 實驗的 연구. 대한한의학회지. 2000;20(4):39-49.
  21. 강익현. 歸脾湯이 Glutamate에 의한 C6 glial Cell의 Apoptosis에 미치는 영향. 원광대 대학원. 2001.
  22. 전희준. 歸脾湯이 Glutamate에 의한 성상 세포의 손상에 미치는 영향. 원광대학교 대학원. 2002.
  23. 오명숙, 허영범, 배현수, 안덕균, 박성규. 歸脾湯이 흰쥐의 기억력 향상과 해마부위의 세포증식에 미치는 영향에 대한 연구. 醫林. 2005;320:46-9.
  24. Seo KI, Lee SW, Yang KH. Antimicrobial and antioxidatice activities of Corni Fructus extracts. Korean J Postharvest Sci Technol. 1999;6:99-103.
  25. 김좌숙, 최선영. 오미자의 이화학적 특성 및 항산화 활성. 한국식품영양학회지 2008;21(1):35-42.
  26. Lee JS, Lee MG, Lee SW. A study on the general components and minerals in parts of Omija(Schizandra chinensis Baillon). Kor J Dietry culture. 1989;4:173-6.
  27. Blois MS. Antioxidant determination by the use of a stable free radical. Nature. 1958;181:1190-200. https://doi.org/10.1038/1811190a0
  28. George P. Dimltrios B. Antioxidant Effect of Natural Phenols on Olive Oil. Journal of the American Oil Chemists' Society. 1991;68:669-71. https://doi.org/10.1007/BF02662292
  29. Branen AL. Toxicological and biochemistry of butylated hydroxytoluene, butylated hydroxyanisole. J. Am. Oil. Chem. Soc. 1975;52:59-63. https://doi.org/10.1007/BF02901825
  30. Hatano T. Constituents of natural medicines with scavenging effects on active oxygen species-tannins and related polyphenols. Natural Medicines. 1995;49:357.
  31. Masaki H, Sakaki S, Atsumi T, and Sakurai H. Active-oxygen scavenging activity of plant extracts. Biol. Pharm. Bull. 1995;18:162. https://doi.org/10.1248/bpb.18.162
  32. Beckman KB, Ames BN. The free radical theory of aging matures. Physiol Rev. 1998;78:547-81.
  33. Chung HY, Kim HJ, Kim JW, Yu BP. The inflammation hypothesis of aging : molecular modulation by calorie restriction. Ann NY Acad Sci. 2001;928:327-35. https://doi.org/10.1111/j.1749-6632.2001.tb05662.x
  34. Vincenzo DM and Ennio E. Biochemical and Therapeutic effects of antioxidants in the treatment of Alzheimer's disease, Parkinson's disease, and Amyotrophic lateral sclerosis. CNS & Neurological disorders. 2003;2:95-107. https://doi.org/10.2174/1568007033482959
  35. 한백수. 6-hydroxydopamine과 1-methyl-4-phenylpyridinium에 의해 유도된 도파민성 신경세포 사멸에 대한 특성 연구. 연세대 대학원. 2003.
  36. Cohen G. Oxy-radical toxicity in catecholamine neurons. Neurotoxycology. 1984;5:77-82.
  37. Cohen G, Werner P. Free radicals, oxidative stress, and neurodegeneration. In Neurodegenerative Disease, Calne DB ed(Philadelphia: W.B.). 1994.
  38. 홍원식. 校編 精校黃帝內經素問. 서울:동양 의학연구원출판부. 1985:23-25, 39-40, 119, 303-4.
  39. 박상민, 이상훈, 인창식, 강미경, 장대일, 강성길, 이윤호. 파킨슨병의 한의학적 고찰- 病因病理와 鍼灸療法을 중심으로. 대한침구학회지. 2004;21(1):202-10.
  40. 張從正. 儒門事親. 台北:旋風出版社. 1967;6:1-2.
  41. 한의과대학 본초학교수 공편저. 본초학. 서울:도서출판영림사. 1992:137, 303, 353, 494, 496, 532, 535-6, 54-2, 579, 586, 623, 626.
  42. 嚴用和. 重訂嚴氏濟生方. 북경:인민위생출판사. 1980:115, 117.
  43. 한의과대학 방제학교수 공편저. 방제학. 서울:도서출판영림사. 1999:290-2.
  44. Park YK, Whang WK, Kim IH. The antidiabetic effects of from Cornus officinalis seed. Chung-Ang J Pharm Sci. 1995;9:13-22.
  45. Chung SR, Jeune KH, Park SY, Jang SJ. Toxicity and lectins constituents from the seed of Cornus officinalis. Korean J Pharmacogn. 1993;24:177-82.
  46. 전연희, 김미현, 김미라. 산수유(Cornus officianalis) 에탄올 추출물의 항산화, 항돌 연변이 활성 및 암세포 성장 억제 효과. 한국식품영양학회지. 2008;37(1):1-7.
  47. Dai Y, Hang B, Huang Z. Inhibition of Corni fructus on experimental inflammation. Chung Kuo Chung Yao Ts Chih. 1992; 17:307-9.
  48. Yamahara J, Mibu H, Sawada T, Fujimura J, Takino S.. Antidiabetic principles of Corni Fructus experimental diabetes induced by streptozotocin. Yakugaku Zasshi. 1981;101:86-90.
  49. Lee JS, Lee SW. Effect of water extracts in Omija(Schizandra chinensis Baillon) on alcohol metabolism. Kor J Dietry culture. 1990;5:259-63.
  50. Brand-Williams W, Cutelier ME, Berset C. Use of free radical method to evaluate antioxidant activity, Lebensm. Wiss. Technol. 1995;28:25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
  51. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying improved ABTS radical cation decolorization assay. Free Radical Bio. Med. 1999;26:1231-7. https://doi.org/10.1016/S0891-5849(98)00315-3
  52. 김진율. 제조 공정에 따른 커피 항산화능의 변화와 커피 박 추출물의 식품 소재화. 부경대학교 산업대학원. 2008.
  53. Kochi K, Hajime O, Hisaji T. Synthesis of Novel Polyphenols Consisted of Ferulic and Gallic Acids, Bioorganic & Medicinal Chemistry. 2002;10:1069-75. https://doi.org/10.1016/S0968-0896(01)00361-3
  54. Zhentian L, Judith J, Richard F. Use of Methanolysis for the Determination of Total Ellagic and Gallic Acid Contents of Wood and Foods Products. J. Agric. Food Chem. 2001;49:1165-8. https://doi.org/10.1021/jf000974a
  55. Sladowski D, Steer SL, Clothier RH, and Balls M. An improved MTT assay. J Immunol Methods. 1993;157:203-7. https://doi.org/10.1016/0022-1759(93)90088-O
  56. Bernas T, Dobrucki J. Mitochondrial and nonmitochondrial reduction of MTT : Interaction of MTT with TMRE, JC-1, and NAO Mitochondrial fluorescent probes. Cytometry. 2002;47:236-42. https://doi.org/10.1002/cyto.10080
  57. Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine(3rd ed.). Oxford:Oxford University Press. 1999.
  58. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA. Apparent hydroxyl radical production by peroxynitrite : Implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. USA. 1990;87:1620-4. https://doi.org/10.1073/pnas.87.4.1620
  59. Stamler JS, Hauslauden A.. Oxidative modifications in nitrosative stress. Nat. Stract Biol. 1998;5:247-9. https://doi.org/10.1038/nsb0498-247
  60. Ashai M, Fujii J, Suzuki K, Seo HG, Kuzuya T, Hori M, Tada M, Fujii S, Taniguchi N. Inactivation of glutathione peroxidase by nitric oxide. Implication for cytotoxity, J. Biol. Chem. 1995;270:21335-9.
  61. Becker K, Gui M, Schirmer RH. Inhibition of human glutathione reductase by S-nitrosoglutathione. Eur. J. Biochem. 1995;234:472-8. https://doi.org/10.1111/j.1432-1033.1995.472_b.x
  62. Park SN. Skin aging and antioxidants. J. Korean Soc. Cosmetic Chem. 1997;23:75-132.
  63. Antebi H, Ribiere C, Sinaceur J, Abu-Murad C, Normann R. Oxygen Tadical in Chemistry and Biology. New York. 1984:757-60.
  64. Sies H, Akerboom TP. Glutathione disulfide(GSSG) efflux from cells and tissues. Methods Enzymol. 1984;105:445-51. https://doi.org/10.1016/S0076-6879(84)05062-X
  65. Orrenius S. Mechanism of oxidative cell damage. Birkhauser Verlag, Basel, Switzerland. 1993:47-63.