Recent Trends of Nano-stereolithography Process for Fabrication of 3D Nano/micro Structures and Its Applications

나노/마이크로 3 차원 응용형상 제작을 위한 나노 스테레오 리소그래픽 공정의 기술동향

  • Yang, Dong-Yol (Department of Mechanical Engineering, Korea Advanced Institute of Science & Technology) ;
  • Lim, Yae-Woo (Department of Mechanical Engineering, Korea Advanced Institute of Science & Technology) ;
  • Son, Yong (Department of Mechanical Engineering, Korea Advanced Institute of Science & Technology)
  • 양동열 (한국과학기술원 기계항공시스템학부) ;
  • 임태우 (한국과학기술원 기계항공시스템학부) ;
  • 손용 (한국과학기술원 기계항공시스템학부)
  • Published : 2009.08.01

Abstract

Keywords

References

  1. Campbell, M., Sharp, D. N., Harrison, M. T., Denning R. G. and Turberfield, A. J., "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature, Vol. 404, No. 6773, pp. 53-56, 2000 https://doi.org/10.1038/35003523
  2. Jeon, S., Park, J., Cirelli, R., Yang, S., Heitzman, C. E., Braun, P. V., Kenis, P. J. A. and Rogers, J. A., "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," PNAS, Vol. 101, No. 34, pp. 12428-12433, 2004 https://doi.org/10.1073/pnas.0403048101
  3. Chung, S., Park, S., Lee, I., Jeong, H. and Cho, D., "Replication techniques for a metal microcomponent having real 3D shape by microcasting process," Microsystem Technologies, Vol. 11, No. 6, pp. 424-428, 2005 https://doi.org/10.1007/s00542-004-0475-3
  4. Abbas, N. M., Solomon, D. G. and Bahari, Md. F., "A review on current research trends in electrical discharge machining(EDM)," International Journal of Machine Tools & Manufacture, Vol. 47, No. 7-8, pp. 1214-1228, 2007 https://doi.org/10.1016/j.ijmachtools.2006.08.026
  5. Choi, J., Wicker, R. B., Cho, S., Ha, C. and Lee, S., "Cure depth control for complex 3D microstructure fabrication in dynamic mask projection microstereolithography," Rapid Prototyping Journal, Vol. 15, No. 1, pp. 59-70, 2009 https://doi.org/10.1108/13552540910925072
  6. Kawata, S., Sun, H., Tanaka, T. and Takada, K., "Finer features for functional microdevices," Nature, Vol. 412, No. 6848, pp. 697-698, 2001 https://doi.org/10.1038/35089130
  7. Serbin, J., Egbert, A., Ostendorf, A. and Chichkov, B. N., "Femtosecond laser-induced two-photon polymerization of inorganic–organic hybrid materials for applications in photonics," Optics Letters, Vol. 28, No. 5, pp. 301-303, 2003 https://doi.org/10.1364/OL.28.000301
  8. Yang, D. Y., Park, S. H. and Lim, T. W., "Ultraprecise microreproduction of a threedimensional artistic sculpture by multipath scanning method in two-photon photopolymerization," Applied Physics Letters, Vol. 90, No. 7, Paper No. 013113, 2007 https://doi.org/10.1063/1.2425022
  9. Lee, K. S., Kim, R. H., Yang, D. Y. and Park, S. H., "Advances in 3D nano/microfabrication using twophoton initiated polymerization," Progress in Polymer Science, Vol. 33, No. 6, pp. 631-681, 2008 https://doi.org/10.1016/j.progpolymsci.2008.01.001
  10. Lim, T. W., Son, Y., Yang, D. Y., Kong, H. J., Lee, K. S. and Park, S. H., "Highly effective threedimensional large-scale microfabrication using a continuous scanning method," Applied Physics A, Vol. 92, No. 3, pp. 541-545, 2008 https://doi.org/10.1007/s00339-008-4610-3
  11. Liao., C. Y., Bouriauand, M., Baldeck, P. L., Léon, J., Masclet, C. and Chung, T., "Two-dimensional slicing method to speed up the fabrication of micro-objects based on two-photon polymerization," Applied Physics Letters, Vol. 91, No. 3, Paper No. 033108, 2007 https://doi.org/10.1063/1.2759269
  12. Son, Y., Lim, T. W., Yang, D. Y., Yi, S. W., Kong, H. J. and Park, S. H., "Study on process parameters of a SU8 resin in two-photon stereolithography for the fabrication of robust three-dimensional microstructures," Journal of the KSPE, Vol. 25, No. 1, pp. 130-137, 2008
  13. Passinger, S., Saifullah, M. S. M., Reinhardt, C., Subramanian, K. R. V., Chichkov, B. N. and Welland, M. E., "Direct 3D patterning of TiO2 using femtosecond laser pulses," Advanced Materials, Vol. 19, No. 9, pp. 1218-1221, 2007 https://doi.org/10.1002/adma.200602264
  14. Pham, T. A., Kim, D. P., Lim, T. W., Park, S. H., Yang, D. Y. and Lee, K. S., "Three-dimensional sicn ceramic microstructures via nano-stereolithography of inorganic polymer photoresists," Advanced Functional Materials, Vol. 16, No. 9, pp. 1235-1241, 2006 https://doi.org/10.1002/adfm.200600009
  15. Lim, T. W., Son, Y. and Yang, D. Y., "Net shape manufacturing of three-dimensional SiCN ceramic microstructures using an isotropic shrinkage method by introducing shrinkage guiders," Int. J. Applied Ceramic Technology, Vol. 5, No. 3, pp. 258-264, 2008 https://doi.org/10.1111/j.1744-7402.2008.02234.x
  16. Tanaka, T., Ishikawa, A. and Kawata, S., "Twophoton-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure," Applied Physics Letters, Vol. 88, No. 8, Paper No. 081107, 2006 https://doi.org/10.1063/1.2177636
  17. Ishikawa, A., Tanaka, T. and Kawata, S., "Improvement in the reduction of silver ions in aqueous solution using two-photon sensitive dye," Applied Physics Letters, Vol. 89, No. 11, Paper No. 113102, 2006 https://doi.org/10.1063/1.2345601
  18. Tosa, N., Bosson, J., Pierre, M., Rambaud, C., Bouriau, M., Vitrant, G., Stephan, O., Astilean, S. and Baldeck, P. L., "Optical properties of metallic nanostructures fabricated by two-photon induced photoreduction," Proceedings of SPIE, Vol. 6195, Paper No. 619501, 2006 https://doi.org/10.1117/12.663696
  19. Cao, Y., Takeyasu, N., Tanaka, T., Duan, X. and Kawata, S., "3D metallic anostructure fabrication by surfactant-assisted multiphoton-induced reduction," Small, Vol. 5, No. 10, pp. 1144-1148, 2009 https://doi.org/10.1002/smll.200801179
  20. Son, Y., Lim, T. W., Yang, D. Y., Prabhakaran, P. and Lee, K. S., "Improvement of metallic microstructure precision employing two photon induced photoreduction process," Trans. of KSME(A), Vol. 32, No. 9, pp. 754-760, 2008 https://doi.org/10.3795/KSME-A.2008.32.9.754
  21. Park, S. H., Jeong, J. H., Choi, D. G., Kim, K. D., Altun, A. O., Lee, E. S., Yang, D. Y. and Lee, K. S., "Adaptive bonding technique for precise assembly of three-dimensional Microstructures," Applied Physics Letters, Vol. 90, No. 23, Paper No. 233109, 2007 https://doi.org/10.1063/1.2746085
  22. Tetreault, N., Freymann, G. V., Deubel, M., Hermatschweiler, M., Perez-Willard, F., John, S., Wegener, M. and Ozin, G. A., "New route to threedimensional photonic bandgap materials: silicon double inversion of polymer templates," Advanced Materials, Vol. 18, No. 4, pp. 457-460, 2006 https://doi.org/10.1002/adma.200501674
  23. Gratson, G. M., Garcia-Santamaria, F., Lousse, V., Xu, M., Fan, S., Lewis, J. A. and Braun, P. V., "Direct-write assembly of three-dimensional photonic crystals: conversion of polymer scaffolds to silicon hollow-woodpile structures," Advanced Materials, Vol. 18, No. 4, pp. 461-465, 2006 https://doi.org/10.1002/adma.200501447
  24. Garcia-Santamaria, F., Xu, M., Lousse, V., Fan, S., Braun, P. V. and Lewis, J. A., "A germanium inverse woodpile structure with a large photonic band gap," Advanced Materials, Vol. 19, No. 12, pp. 1567-1570, 2007 https://doi.org/10.1002/adma.200602906
  25. Lim, T. W., Park, S. H., Yang, D. Y., Pham, T. A., Lee, D. H., Kim, D. P., Chang, S. I. and Yoon, J. B., "Fabrication of three-dimensional SiC-based ceramic micropatterns using a sequential micromolding-and-pyrolysis process," Microelectronic Engineering, Vol.83, No. 11-12, pp. 2475-2481, 2006 https://doi.org/10.1016/j.mee.2006.05.010
  26. Park, S. H., Lim, T. W., Yang, D. Y., Jeong, J. H., Kim, K. D., Lee, K. S. and Kong, H. J., "Effective fabrication of three-dimensional nano/microstructures in a single step using multilayered stamp," Applied Physics Letters, Vol. 88, No. 20, Paper No. 203105, 2006 https://doi.org/10.1063/1.2204448
  27. Bae, K. M., Ko, J. S., Park, S. H., Lim, T. W. and Yang, D. Y., "Investigation into fabrication of 3D metallic mold for mass replication of microstructures," 11th korean MEMS Conference, pp.15-16, 2009
  28. Matsuo, S., Juodkazis, S. and Misawa, H., "Femtosecond laser microfabrication of periodic structures using a microlens array," Applied Physics A, Vol. 80, No. 4, pp. 683-685, 2005 https://doi.org/10.1007/s00339-004-3108-x
  29. Kato, J., Takeyasu, N., Adachi, Y., Sun, H. and Kawata, S., "Multiple-spot parallel processing for laser micronanofabrication," Applied Physics Letters, Vol. 86, No. 4, Paper No. 044102, 2005 https://doi.org/10.1063/1.1855404
  30. Dong, X., Zhao, Z. and Duan, X., "Micronanofabrication of assembled threedimensional microstructures by designable multiple beams multiphoton processing," Applied Physics Letters, Vol. 91, No. 12, Paper No. 124103, 2007 https://doi.org/10.1063/1.2789661
  31. Chen, Q., Wu, D., Niu, L., Wang, J., Lin, X., Xia, H. and Sun, H., "Phase lenses and mirrors created by laser micronanofabrication via two-photon photopolymerization," Applied Physics Letters, Vol. 91, No. 17, Paper No. 171105, 2007 https://doi.org/10.1063/1.2798505
  32. Rill, M. S., Plet, C., Thiel, M., Staude, I., Freymann, G. V., Linden, S. and Wegener, M., "Photonic metamaterials by direct laser writing and silver chemical vapour deposition," Nature Materials, Vol. 7, No. 7, pp. 543-546, 2008 https://doi.org/10.1038/nmat2197
  33. Drakakis, T. S., Papadakis, G., Sambani, K., Filippidis, G., Georgiou, S., Gizeli, E., Fotakis, C. and Farsari, M., "Construction of three-dimensional biomolecule structures employing femtosecond lasers," Applied Physics Letters, Vol. 89, No. 14, Paper No. 144108, 2006 https://doi.org/10.1063/1.2359533
  34. Ovsianikov, A., Chichkov, B., Mente, P., Monteiro-Riviere, N. A., Doraiswamy, A. and Narayan, R. J., "Two photon polymerization of polymer–ceramic hybrid materials for transdermal drug delivery," Int. J.Applied Ceramic Technology, Vol. 4, No. 1, pp. 22-29, 2007 https://doi.org/10.1111/j.1744-7402.2007.02115.x
  35. Ovsianiko, A., Ostendorf, A. and Chichkov, B. N., "Three-dimensional photofabrication with femtosecond lasers for applications in photonics and biomedicine," Applied Surface Science, Vol. 253, No. 15, pp. 6599-6602, 2007 https://doi.org/10.1016/j.apsusc.2007.01.058
  36. Stoneman, M., Fox, M., Zeng, C. and Raicu, V., "Real-time monitoring of two-photon photopolymerization for use in fabrication of microfluidic devices," Lab on a Chip, Vol. 9, No. 6, pp. 819-827, 2009 https://doi.org/10.1039/b816993d
  37. Maruo, S. and Inoue, H., "Optically driven micropump produced by three-dimensional twophoton microfabrication," Applied Physics Letters, Vol. 89, No.14, Paper No. 144101, 2006 https://doi.org/10.1063/1.2358820
  38. Maruo, S. and Inoue, H., "Optically driven viscous micropump using a rotating microdisk," Applied Physics Letters, Vol. 91, No. 8, Paper No. 084101, 2007 https://doi.org/10.1063/1.2768631
  39. Maruo, S., Ikuta, K. and Korogi, H., "Submicron manipulation tools driven by light in a liquid," Applied Physics Letters, Vol. 82, No. 1, pp. 133-135, 2003 https://doi.org/10.1063/1.1533853
  40. Ikuta, K., Sato, F., Kadoguchi, K. and Itoh, S., "Optical driven master-slave controllable nanomanipulator with real-time force sensing," IEEE 21st International Micro Electro Mechanical Systems, pp. 539-542, 2008
  41. Yamanishi, Y., Sakuma, S., Onda, K. and Arai, F., "Biocompatible polymeric magnetically driven microtool for particle sorting," Journal of Micro-Nano Mechatronics, Vol. 4, No. 1-2, pp. 49-57, 2008 https://doi.org/10.1007/s12213-008-0009-7
  42. Kim, J. E., Min, S. K., Chung, S. E. and Kwon, S. H, "Magnetically actuated micromotor with aligned superparamagnetic particle chains," 11th Korean MEMS Conference, pp. 259-260, 2009