Cadmium but not Mercury Suppresses NF-$\kappa$B Activation and COX-2 Expression Induced by Toll-like Receptor 2 and 4 Agonists

  • Ahn, Sang-Il (Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University) ;
  • Park, Seul-Ki (Department of Medical Biotechnology, College of Medical Sciences, Soonchunhyang University) ;
  • Lee, Mi-Young (Department of Medical Biotechnology, College of Medical Sciences, Soonchunhyang University) ;
  • Youn, Hyung-Sun (Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University)
  • 발행 : 2009.06.30

초록

Toll-like receptors (TLRs) induce innate immune responses by recognizing conserved microbial structural molecules. All TLR signaling pathways culminate in the activation of nuclear factor kappa-B (NF-$\kappa$B) leading to the induction of inflammatory gene products such as cyclooxygenase-2 (COX-2). Deregulated activation of TLRs can lead to the development of severe systemic inflammation. Divalent heavy metals, cadmium and mercury, have been used for thousands of years. While cadmium and mercury are clearly toxic to most mammalian organ systems, especially the immune system, their underlying toxic mechanism(s) remain unclear. Here, we report biochemical evidence that cadmium, but not mercury, inhibits NF-$\kappa$B activation and COX-2 expression induced by TLR2 or TLR4 agonists, while cadmium does not inhibit NF-$\kappa$B activation induced by the downstream signaling component of TLRs, MyD88. Thus, the target of cadmium to inhibit NF-$\kappa$B activation may be upstream of MyD88 including TLRs themselves, or events leading to TLR activation by agonists.

키워드

참고문헌

  1. Jarup, L. Hazards of heavy metal contamination. Br Med Bull 68:167-182 (2003) https://doi.org/10.1093/bmb/ldg032
  2. Jarup, L., Berglund, M., Elinder, C. G., Nordberg, G. & Vahter, M. Health effects of cadmium exposure--a review of the literature and a risk estimate. Scand J Work Environ Health 24 Suppl 1:1-51 (1998)
  3. WHO. Cadmium. Environmental health criteria. (World health organization, Geneva, 1992)
  4. Buchet, J. P. et al. Renal effects of cadmium body burden of the general population. Lancet 336:699-702 (1990) https://doi.org/10.1016/0140-6736(90)92201-R
  5. Alfven, T. et al. Low-level cadmium exposure and osteoporosis. J Bone Miner Res 15:1579-1586 (2000) https://doi.org/10.1359/jbmr.2000.15.8.1579
  6. Kolonel, L. N. Association of cadmium with renal cancer. Cancer 37:1782-1787 (1976) https://doi.org/10.1002/1097-0142(197604)37:4<1782::AID-CNCR2820370424>3.0.CO;2-F
  7. Mandel, J. S. et al. International renal-cell cancer study. IV. Occupation. Int J Cancer 61:601-605 (1995) https://doi.org/10.1002/ijc.2910610503
  8. WHO. Inorganic mercury. Environmental health criteria. (World health organization, Geneva, 1991)
  9. WHO. Methyl mercury. Environmental health criteria. (World health organization, Geneva, 1990)
  10. Lindh, U., Hudecek, R., Danersund, A., Eriksson, S. & Lindvall, A. Removal of dental amalgam and other metal alloys supported by antioxidant therapy alleviates symptoms and improves quality of life in patients with amalgam-associated ill health. Neuro Endocrinol Lett 23:459-482 (2002)
  11. Langworth, S., Bjorkman, L., Elinder, C. G., Jarup, L. & Savlin, P. Multidisciplinary examination of patients with illness attributed to dental fillings. J Oral Rehabil 29:705-713 (2002) https://doi.org/10.1046/j.1365-2842.2002.00963.x
  12. Weiss, B., Clarkson, T. W. & Simon, W. Silent latency periods in methylmercury poisoning and in neurodegenerative disease. Environ Health Perspect 110 Suppl 5:851-854 (2002) https://doi.org/10.1289/ehp.02110s5851
  13. Salonen, J. T. et al. Intake of mercury from fish, lipid peroxidation, and the risk of myocardial infarction and coronary, cardiovascular, and any death in eastern Finnish men. Circulation 91:645-655 (1995) https://doi.org/10.1161/01.CIR.91.3.645
  14. Takeda, K. & Akira, S. Toll-like receptors in innate immunity. Int Immunol 17:1-14 (2005)
  15. Medzhitov, R. Toll-like receptors and innate immunity. Nat Rev Immunol 1:135-145 (2001) https://doi.org/10.1038/35100529
  16. O''Neill, L. A. TLRs: Professor Mechnikov, sit on your hat. Trends Immunol 25:687-693 (2004) https://doi.org/10.1016/j.it.2004.10.005
  17. Rhee, S. H. & Hwang, D. Murine TOLL-like receptor 4 confers lipopolysaccharide responsiveness as determined by activation of NF kappa B and expression of the inducible cyclooxygenase. J Biol Chem 275:34035-34040 (2000) https://doi.org/10.1074/jbc.M007386200
  18. Kawai, T. et al. Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes. J Immunol 167:5887-5894 (2001) https://doi.org/10.4049/jimmunol.167.10.5887
  19. Christensen, M. M. Ellermann-Eriksen, S., Rungby, J. & Mogensen, S. C. Influence of mercuric chloride on resistance to generalized infection with herpes simplex virus type 2 in mice. Toxicology 114:57-66 (1996) https://doi.org/10.1016/S0300-483X(96)03409-9
  20. Shumilla, J. A., Wetterhahn, K. E. & Barchowsky, A. Inhibition of NF-kappa B binding to DNA by chromium, cadmium, mercury, zinc, and arsenite in vitro: evidence of a thiol mechanism. Arch Biochem Biophys 349:356-362 (1998) https://doi.org/10.1006/abbi.1997.0470
  21. Li, Q. & Verma, I. M. NF-kappaB regulation in the immune system. Nat Rev Immunol 2:725-734 (2002) https://doi.org/10.1038/nri910
  22. Xie, Q. W., Kashiwabara, Y. & Nathan, C. Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. J Biol Chem 269:4705-4708 (1994)
  23. Sha, W. C., Liou, H. C., Tuomanen, E. I. & Baltimore, D. Targeted disruption of the p50 subunit of NF-kappa B leads to multifocal defects in immune responses. Cell 80:321-330 (1995) https://doi.org/10.1016/0092-8674(95)90415-8
  24. Stohs, S. J. & Bagchi, D. Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321-336 (1995) https://doi.org/10.1016/0891-5849(94)00159-H
  25. Hanas, J. S. & Gunn, C. G. Inhibition of transcription factor IIIA-DNA interactions by xenobiotic metal ions. Nucleic Acids Res 24:924-930 (1996) https://doi.org/10.1093/nar/24.5.924
  26. Splittgerber, A. G. & Tappel, A. L. Inhibition of glutathione peroxidase by cadmium and other metal ions. Arch Biochem Biophys 197:534-542 (1979) https://doi.org/10.1016/0003-9861(79)90277-7
  27. Zalups, R. K. Molecular interactions with mercury in the kidney. Pharmacol Rev 52:113-143 (2000)
  28. Dieguez-Acuna, F. J. & Woods, J. S. Inhibition of NFkappaB-DNA binding by mercuric ion: utility of the non-thiol reductant, tris (2-carboxyethyl)phosphine hydrochloride (TCEP), on detection of impaired NFkappaB-DNA binding by thiol-directed agents. Toxicol In Vitro 14:7-16 (2000) https://doi.org/10.1016/S0887-2333(99)00091-0
  29. Dieguez-Acuna, F. J., Ellis, M. E., Kushleika, J. & Woods, J. S. Mercuric ion attenuates nuclear factorkappaB activation and DNA binding in normal rat kidney epithelial cells: implictions for mercury-induced nephrotoxicity. Toxicol Appl Pharmacol 173:176-187 (2001) https://doi.org/10.1006/taap.2001.9195
  30. Kim, S. H., Johnson, V. J. & Sharma, R. P. Mercury inhibits nitric oxide production but activates proinflammatory cytokine expression in murine macrophage: differential modulation of NF-kappaB and p38 MAPK signaling pathways. Nitric Oxide 7:67-74 (2002) https://doi.org/10.1016/S1089-8603(02)00008-3
  31. Jeong, E. M. et al. Cadmium stimulates the expression of ICAM-1 via NF-kappaB activation in cerebrovascular endothelial cells. Biochem Biophys Res Commun 320:887-892 (2004) https://doi.org/10.1016/j.bbrc.2004.05.218
  32. Seok, S. M. et al. COX-2 is associated with cadmiuminduced ICAM-1 expression in cerebrovascular endothelial cells. Toxicol Lett 165:212-220 (2006) https://doi.org/10.1016/j.toxlet.2006.04.007
  33. Xie, J. & Shaikh, Z. A. Cadmium-induced apoptosis in rat kidney epithelial cells involves decrease in nuclear factor-kappa B activity. Toxicol Sci 91:299-308 (2006) https://doi.org/10.1093/toxsci/kfj131
  34. Youn, H. S. et al. Suppression of MyD88- and TRIFdependent signaling pathways of Toll-like receptor by (-)-epigallocatechin-3-gallate, a polyphenol component of green tea. Biochem Pharmacol 72:850-859 (2006) https://doi.org/10.1016/j.bcp.2006.06.021
  35. Youn, H. S. et al. Specific inhibition of MyD88-independent signaling pathways of TLR3 and TLR4 by resveratrol: molecular targets are TBK1 and RIP1 in TRIF complex. J Immunol 175:3339-3346 (2005)
  36. Youn, H. S., Saitoh, S. I., Miyake, K. & Hwang, D. H. Inhibition of homodimerization of Toll-like receptor 4 by curcumin. Biochem Pharmacol 72:62-69 (2006) https://doi.org/10.1016/j.bcp.2006.03.022
  37. Youn, H. S., Lee, J. Y., Saitoh, S. I., Miyake, K. & Hwang, D. H. Auranofin, as an anti-rheumatic gold compound, suppresses LPS-induced homodimerization of TLR4. Biochem Biophys Res Commun 350:866-871 (2006) https://doi.org/10.1016/j.bbrc.2006.09.097
  38. Youn, H. S., Lee, J. Y., Saitoh, S. I., Miyake, K. & Hwang, D. H. Auranofin, as an anti-rheumatic gold compound, suppresses LPS-induced homodimerization of TLR4. Biochem Biophys Res Commun 350:866-871 (2006) https://doi.org/10.1016/j.bbrc.2006.09.097