Fractionation and Angiotensin I-converting Enzyme (ACE) Inhibitory Activity of Gelatin Hydrolysates from by-products of Alaska Pollock Surimi

  • Park, Chan-Ho (Department of Seafood Science and Technology/Institute of Marine Industry, Gyeongsang National University) ;
  • Kim, Hyung-Jun (Department of Seafood Science and Technology/Institute of Marine Industry, Gyeongsang National University) ;
  • Kang, Kyung-Tae (Hansung Enterprise Co., LTD.) ;
  • Park, Jae-W. (Seafood Laboratory & Department of Food Science and Technology, Oregon State University) ;
  • Kim, Jin-Soo (Department of Seafood Science and Technology/Institute of Marine Industry, Gyeongsang National University)
  • Published : 2009.06.30


Gelatin hydrolysates with a high inhibitory activity against angiotensin I-converting enzyme (ACE) were fractionated from Alaska pollock surimi refiner discharge. The ACE-inhibitory activity, expressed as $IC_{50}$ (mg/mL), was highest (0.49 mg/mL) in gelatin hydrolysates formed by sequential 2-hr treatments of Pronase and Flavourzyme. After fractionation through four different membrane filters with molecular weight cut-offs of 3, 5, 10, and 30 kDa, the highest ACE-inhibitory activity (0.21 mg/mL) was observed with the 3-kDa filtrate.


  1. Ariyoshi, Y. 1993. Angiotensil1 convertil1g enzyme in- hibitors derived from food proteins. Trends Food Sci. Technol., 4, 139-144
  2. Byun, H.G. and S.K. Kim. 2001. Purification and characterization of angiotcnsin converting enzyme (ACE) inhibitory peptides from Alaska pollock (Theragra chalcogramma) skin. Process. Biochemistry, 36, 1155-1162
  3. Chcung, H.S., F.L. Wang, M.A. Ondetti, E.F. Sabo and D.W. Cushman. 1980. Binding of peptide substrates and inhibitors of angiotcnsin convcrting cnzyme Importance ofthe COOH-tcrrninal dipeptide sequencc. J. Biol. Chem., 255, 401-407
  4. Cho, S.M., K. S. Kwak, D.C. Park, Y.S. Gu, c.I. Ji, D.H Jal1g, Y.B. Lee and S.B. Kim. 2004. Processmg optimization and functiol1al properties of gelatin from shark (lsurus oxyrinchus) cartilage. Food Hydrocolloids, 18, 573-579
  5. Cho, S.M., Y.S. Gu and S.B. Kim. 2005. Extracting optimization and physical properties of yellowfin tuna (Thunnus albacares) skin gelatin compared to mammalian gelatins. Food Hydrocolloids, 19, 221-229
  6. Ciarlo, A.S., M.E. Paredi and A.N. Fraga. 1997. Isolation of soluble collagen from hake skin (Merluccius hubbsi). J. Aquatic Food Prod. Technol., 6, 65-77
  7. Gbogouri, G.A., M. Linder, J. Fanni and M. Parmentier 2004. Influence of hydrolysis degree on the functional properties of salmon byproducts hydrolysates. J. Food Sci., 69, C615-C622
  8. Haug, I.J., K.I. Draget and O. Smidsrod. 2004. Physical and rheological properties of fish gelatin compared to mammalian gclatin. Food Hydrocolloids, 18, 203-213
  9. Jamilah, B. and K.G. Harvindcr. 2002. Properties of gelatins from skins of fish-black tilapia (Oreochromis mossambicus) and red tilapia (Oreochromis nilotica). Food Chem., 77, 81-84
  10. Horiuchi, M., K.I. Fujimura, T. Tcrashima and T. Iso. 1982. Method for deterrnination of angiotensin I convcrting enzyme activity in blood and tissue by highperforrnance liquid chromatography. J. Chromatogr., 233, 123-130
  11. Hoyle, N. and J.H. Merritt. 1994. Quality of fish protcin hydrolysatεs from herring (Clupea harengus). J. Food Sci., 59, 76-79, 129
  12. Kim, S.K., H.G. Byun, Y.J. Jeon and D.J. Cho. 1994 Functional properies of fish skin gelatin hydrolysate from a continuous two-stage membrane reactor. Korean Agric. Chem. Biotechnol., 37, 85-93
  13. Kim, S.K., H.G. Byun, P.J. Park and F. Shahidi. 2001a. Angiotensin I converting enzyme inhibitory peptides purified from bovine skin gelatin hydrolysate. J. Agric. Food Chem., 49, 2992-2997
  14. Kim, S.K., Y.T. Kim, H.G. Byun, K. S. Nam, D.S. Joo and F. Shahidi. 2001b. Isolation and charactcrization of antioxidative peptides from gealtin hydrolysatc of Alaska pollack skin. J. Agric. Food Chem., 49, 1984-1989
  15. Matsui, T., H. Matsufugi, E. Seki, K. Osaima, M. Nakashima and Y. Osajima. 1993. Inhibition of angiotcnsin converting enzyme by Bacillus licheniformis alkaline protease hydrolyzates derived from sardine muscle Biosci. Biotech. Biochem., 57, 922-925
  16. Morrissey, M.T., J.W. Park and L. Huang. 2000. Surimi processing waste-its control and utilization. In: Surimi and Surimi Seafoods. editor Park JW. New Y ork and Bassel Marcel Dekker, 127-165
  17. Mendis, E., N. Rajapakse and S.K. Kim. 2005. Antioxidant propeπies of a radical-scavenging pcptide purified from enzymatically prepared fish skin gclatin hydrolysate. J. Agric. Food Chem., 53, 581-587
  18. Ondetti, M.A., N.J. Williams, E.F. Sabo, J. Pluscec, E.R. Weaver and O. Kocy. 1971. Angiotcnsin -converting cnzyme inhibitors from the venom of Bothrops jararaca. Biochemystry, 10, 4033-4039
  19. Steel, R.G.D. and J.H Torrie. 1980. Principle and procedures of statistics. 1st ed. Tokyo. McGraw-Hill Kogakusha, 187-221
  20. Ukeda, H., H. Matsuda, K. Osajima, H. Matsufuji, T. Matsui and Y. Osajima. 1992. Peptides from peptic hydrolyzatε of heated sardine meat that inhibit angiotensin converting enzyme. Nippon Nogeikagaku Kaishii, 66, 25-29
  21. Wendel, A.P. 1999. Recovery and utilization of Pacific whiting frame meat for surimi production (MSci thesis) Oregon State University. Corvallis, Oregon