A NUMERICAL STUDY ON FLOWS IN A FUEL TANK WITH BAFFLES AND POROUS MEDIA TO REDUCE SLOSHING NOISE

연료탱크 슬로싱 소음 저감을 위한 배플 및 다공성 물질 설치에 따른 유동해석 연구

  • Published : 2009.06.30

Abstract

The sloshing tank causes the instability of the fluid flows and the fluctuation of the impact pressure by the liquid on the tank. These flow characteristics inside the sloshing tank can generate the uncomfortable sloshing noise. In the present study, a numerical analysis for the reduction of a fuel tank sloshing noise was performed. To simulate the flow characteristics in a sloshing tank with partially filled liquid, a VOF method was used for interfacial flows by applying a momentum source term for the sloshing motion in a non-inertial reference frame. This numerical method was verified by comparing its results with the available experimental data. For the reduction of the sloshing noise, the horizontal and vertical baffles and porous media inside a sloshing tank were considered and numerically analyzed in the present study. For various installations of these baffles and porous media, the characteristics of the liquid behavior in the sloshing tank were obtained along with the impact pressure on the wall and the height of the free surface along the wall. These basic results can be used for the design of the actual vehicular fuel tank with the reduced sloshing noise.

Keywords

References

  1. 1998, 박성호, 송재수, 이종철, 고병식, 김성원, "연료탱크의 슬로싱 진동 및 소음에 관한 모델링 및 해석," 한국자동차공학회 1998년도 춘계학술대회 논문집, pp.563-568
  2. 2007, 채경훈, 김영림, "연료 유동음 개선에 관한 연구," 한국자동차공학회 2007년도 춘계학술대회 논문집, pp.971-976
  3. 1999, 유준태, 연정흠, 연성기, “액체연료 탱크내부의 연료슬로슁 해석 및 최적 배플설계에 관한 연구,” 한국항공우주학회지, 제27권, 제5호, pp.60-70
  4. 2002, 윤성호, 박기진, 심국상, “액체연료탱크의 슬로싱거동 평가기법,” 한국정밀공학회 2002년도 춘계학술대회논문집, pp.314-317
  5. 2001, Hinatsu, M., Tsukada, Y., Fukusawa, R. and Tanaka, Y., "Experiments of Two-Phase Flows for the Joint Research," Proceeding of SRI-TUHH Mini-Workshop on Numerical Simulation of Two-Phase Flows, pp.12-19
  6. 2009, Panigrahy, P.K., Saha, U.K. and Maity, D., "Experimental Studies on Sloshing Behavior due to Horizontal movement of liquids in baffled tanks," Ocean Engineering, Vol.36, No.3-4, pp.213-222 https://doi.org/10.1016/j.oceaneng.2008.11.002
  7. 2000, 김민수, 박종선, 이우일, "자유 표면이 존재하는 유체 유동 해석을 위한 VOF 방법 기반의 새로운 수치 기법 (II) -캐비티 충전 문제와 슬로싱 문제에의 응용-," 대한기계학회논문집 B권, 제24권, 제12호, pp.1570-1579
  8. 2006, 명현국, 김종은, “경계면포착법에 의한 사각형 탱크내의 2차원 충돌유동과 슬러싱에 관한 수치적 연구,” 대한기계학회 2006년도 추계학술대회 강연 및 논문 초록집, pp.1-6
  9. 2006, 김윤호, 김태균, 이규정, 홍사영, "3차원 저장탱크 내부에서의 슬로싱에 대한 전산해석 연구," 대한기계학회 2006년도 춘계학술대회 강연 및 논문 초록집, pp.1564-1569
  10. 2005, Rhee, S.H., "Unstructured Grid Based Reynolds- Averaged Navier-Stokes Method for Liquid Tank Sloshing," Journal of Fluids Engineering, Vol.127, pp.572-581 https://doi.org/10.1115/1.1906267
  11. 2008, 이정민, 윤현식, 전호환, "레벨셋법을 이용한 2차원 사각 탱크 내부의 슬로싱 충격압력에 관한 수치적 연구," 한국해양환경공학회 2008년도 한국해양과학기술협의회 공동학술대회 논문집, pp.1456-1156
  12. 2008, 최형권, "최소자승법과 Level-set 방법을 이용한 3차원 슬로싱 유동의 수치해석," 대한기계학회 2008년도 추계학술대회 강연 및 논문 초록집, pp.2401-2405
  13. 2005, Roh, W.-J., Cho, S.-H. and Park, J.I., "Simulation of Sloshing in Fuel Tanks and Parametric Study on Noise Reduction by Decreasing Impact Pressure," SAE Paper No.2005-01-1913
  14. 2006, Wiesche, S.A.D., "Noise due to Sloshing within Automotive Fuel Tanks," Forsch Ingenieurwes, Vol.70, pp.13-24 https://doi.org/10.1007/s10010-005-0010-4
  15. 2004, STAR-CD Methodology Version 3.24, Computational Dynamics Ltd
  16. 1999, Ubbink, O. and Issa, R.I., "A Method for Capturing Sharp Fluid Interfaces on Arbitrary Meshes," Journal of Computational Physics, Vol.153, pp.26-50 https://doi.org/10.1006/jcph.1999.6276
  17. 1952, Ergun, S., "Fluid Flow through Packed Columns," Chemical Engineering Progress, Vol.48, pp.89-94
  18. 2000, Teng, H. and Zhao, T.S., "An Extension of Darcy's Law to Non-Stokes Flow in Pours Media," Chemical Engineering Science, Vol.55, pp.2727-2735 https://doi.org/10.1016/S0009-2509(99)00546-1
  19. 2007, Schmidt, W., "Interfacial Drag of Two-phase flow in Porous Media," International Journal of Multiphase Flow, Vol.33, pp.638-657 https://doi.org/10.1016/j.ijmultiphaseflow.2006.09.006