DOI QR코드

DOI QR Code

원판형 분자 드래그펌프 다단 회전자에 대한 압력분포 측정

The Measurement of Vacuum Pressure for the Multi-Stage Rotors of Disk-Type Molecular Drag Pump

  • 권명근 (성균관대학교 대학원 기계공학과) ;
  • 황영규 (성균관대학교 기계공학부)
  • 발행 : 2009.07.30

초록

원판형 분자 드래그펌프 내부의 회전자 위치에 따른 압축 성능과 배기특성에 대하여 실험과 수치 해석적으로 고찰하였다. 실험은 각각의 회전자 위치에 진공압력 게이지들을 부착하여, 펌프의 출구 압력이 0.2 Pa에서 533 Pa 사이일 때, 각 회전자에서의 압력을 측정하였다. 압력측정범위는 출구 압력이 0.2 Pa에서 533 Pa 범위사이에서 측정하였다. 진공펌프 로터의 회전 속도는 24,000 rpm이며, 질소 가스를 사용하여 성능실험을 수행하였다. 본 연구에서는 원판의 단의 수에 따른 원판형 분자 드래그펌프의 성능특성을 파악하고자 하였다. 수치해석을 통해 내부 유동채널에 대한 구체적인 압력 분포를 파악하였으며, 수치해석의 신뢰도 파악을 위하여 실험 측정값과 수치해석 값을 비교하여 검증하였다.

In this study is performed to investigate the pumping characteristics of three-stage disk-type molecular drag pump (DTDP). The experiments are measured using five vacuum pressure gauges in the positions for rotors of DTDP. The experimented DTDP is consisted of three rotors and four stator. In the DTDP, spiral channels of three rotors are cut on the both upper surface and lower surface of a rotating disk, and corresponding stator is a planar disk. The experiments are performed in the outlet pressure range of $0.2{\sim}533\;Pa$. The pressure of each rotors are measured under the various condition of outlet pressure and throughputs, and nitrogen gas is used for test gas. In the numerical study, the pumping characteristics of each rotor are studied for the variation of throughputs in the all rotating channel. Pressure contour and velocity are obtained by the numerical simulation.

키워드

참고문헌

  1. Hablanian M. H, In Vacuum Science and Technology:Pioneers of 20th Century, edited by P. A. Redhead (AIP, New York), pp.126-132 (1994)
  2. Hablanian M. H, High Vacuum Technology (A Practical Guide), Marcel dekker, Inc (1990)
  3. Heo J. S and Hwang Y. K, "Molecular Transition and Slip Flows in the Pumping Channels of Drag Pumps", J. Vac. Sci. Technol. A, Vol. 18, No. 3, pp. 1025-1034 (2000) https://doi.org/10.1116/1.582294
  4. Heo J. S and Hwang Y. K, "Spiral Channel Flows in a Disk-type Drag Pump", J. Vac. Sci. Technol. A , Vol. 19, No. 2, pp. 656-661 (2001) https://doi.org/10.1116/1.1342865
  5. Tu J. Y, Zhu Y, and Wang X. Z, "A New Design for the Disk-Type Molecular Pump", J. Vac. Sci. Technol. A, Vol. 8, No. 5, pp. 3870-3873 (1990) https://doi.org/10.1116/1.576461
  6. Kwon M. K, Heo J. S, and Hwang Y. K, "An Experimental Study on the Pumping Performance of the Multi-stage Disk-type Drag Pump", Journal of the Korean Vacuum Society, Vol. 12, No. 2, pp. 79-85 (2003)
  7. Kwon M. K and Hwang Y. K, "A study on the pumping performance of the disk-type drag pumps for spiral channel in rarefied gas flow", Vacuum, Vol. 76, pp. 63-71 (2004) https://doi.org/10.1016/j.vacuum.2004.05.011
  8. Kwon M. K and Hwang Y. K, "Effect of Vertical Clearance Between a Rotor and Stator of a Disk-type Drag Pump on the Performance", Journal of KSME B, Vol. 28, No. 12, pp. 1501-1510 (2004) https://doi.org/10.3795/KSME-B.2004.28.12.1501
  9. Kwon M. K and Hwang Y. K, "An Experimental Study on the Pumping Perfromance of Molecular Drag Pumps", Journal Mechanical Science and Technology (KSME Int. J.), Vol. 20, No. 9, pp. 1483-1491 (2006) https://doi.org/10.1007/BF02915971

피인용 문헌

  1. The Measurement of Vacuum Pressure for the Multi-Stage Rotors of Disk-Type Molecular Drag Pump vol.18, pp.4, 2009, https://doi.org/10.5757/JKVS.2009.18.4.272