데이터-재순환 최소 평균 자승 알고리즘을 이용한 적응 횡단선 필터의 수렴속도 개선

The Improvement of Adaptive Transversal Filter with Data-Recycling LMS Algorithms Convergence Speed

  • 오승재 (순천청암대학 컴퓨터정보과)
  • 투고 : 2009.07.29
  • 심사 : 2009.09.05
  • 발행 : 2009.09.30

초록

본 논문은 LMS 알고리즘을 이용하여 적응횡단선 필터의 수렴 속도를 향상시키기 위한 효율적인 신호간섭 제어기법을 제안한다. 수신 데이터를 재사용하여 심볼 시간 주기에 계수들을 곱함으로써 적응되는 제안된 알고리즘의 수렴특성이 수렴 속도의 향상을 이론적으로 증명하기 위해 분석한다, 스텝-크기 매개변수 ${\mu}$가 증가됨에 따라 LMS 알고리즘의 수렴 속도가 제어된다. 고유치확산을 증가시킴에 따라 적응 등화기의 수렴속도를 천천히 제어하고 평균 자승 에러의 안정-상태 값을 증가시키는 효과를 나타내며 데이터-재사용 LMS 알고리즘이 적응횡단선 필터의 수렴속도를 (B+1)배만큼 증가시켜 신호간섭제어의 우수성을 입증한다.

In this paper, an efficient signal interference control technique to improve the convergence speed of Adaptive transversal filter with LMS algorithm is introduced. The convergence characteristics of the proposed algorithm, whose coefficients are multiply adapted in a symbol time period by recycling the received data, are analyzed to prove theoretically the improvement of convergence speed. According as the step-size parameter ${\mu}$ is increased, the rate of convergence of the algorithm is controlled. Increasing the eigenvalue spread has the effect of controlling down the rate of convergence of the adaptive equalizer and also increasing the steady-state value of the average squared error and also demonstrate the superiority of signal interference control to the filter algorithm increasing convergence speed by (B+1) times due to the data-recycling LMS Algorithms.

키워드

참고문헌

  1. Po-An Sung and Kwang-Cheng Chen, "A Linear Minimum Mean Square Error Multiuser Receiver in Rayleigh-Fading Channels", IEEE J. Select. Areas Commun., Vol. 14, No. 8, pp.1583-1593, Oct. 1996. https://doi.org/10.1109/49.539412
  2. Jiangzhou Wang and Laurence 2. Milstein, "Adaptive LMS Filters for Cellular CDMA Overlay Situation", IEEE J. Select. Areas Commun., Vol. 14, No. 8, pp.1548-1559, Oct. 1996. https://doi.org/10.1109/49.539408
  3. Simon Haykin, "Adaptive Filter Theory: Third Edition", Prentice Hall International Editions, pp.365-439, 1996.
  4. B. Widrow, Adaptive Signal Processing, Prentice-Hall, 1985.
  5. S. U. H Qureshi, "Adaptive Equalization", Proc. IEEE, Vol. 73, No. 9, pp.1349-1387, Sep. 1985. https://doi.org/10.1109/PROC.1985.13298
  6. Jiangnan Chen and Roland Priener, "An Inequality by Which to Adjust the LMS Algorithm Step-Size", IEEE Trans. Commun. Vol. 43, No. 2/3/4, pp.1477-1483, Feb./Mar./Apr. 1995 https://doi.org/10.1109/26.380197