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A THEOREM OF G-INVARIANT MINIMAL
HYPERSURFACES WITH CONSTANT
SCALAR CURVATURES IN S**!

JAE-UP So

ABSTRACT. Let G = O(k)xO(k)xO(qg) and let M™ be a closed G-invariant
minimal hypersurface with constant scalar curvature in S"*!. Then we
obtain a theorem: If M™ has 2 distinct principal curvatures at some point

p, then the square norm of the second fundamental form of M", § = n.

Introduction

Let M™ be a closed minimally immersed hypersurface in the unit sphere
S+l and h its second fundamental form. Denote by R and S its scalar
curvature and the square norm of h, respectively. It is well known that § =
n(n—1)— R from the structure equations of both M™ and S™*!. In particular, S
is constant if and only if M has constant scalar curvature. In 1968, J. Simons
(6] observed that if S < n everywhere and S is constant, then S € {0, n}.
Clearly, M™ is an equatorial sphere if S = 0. And when S = n, M" is indeed
a product of spheres, due to the works of Chern, do Carmo, and Kobayashi [2]
and Lawson [4].

We are concerned about the following conjecture posed by Chern [8].

CHERN CONJECTURE. For any n > 3, the set R, of the real numbers each
of which can be realized as the constant scalar curvature of a closed minimally

immersed hypersurface in S™*! is discrete.
C. K. Peng and C. L. Terng [7] proved
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THEOREM [Peng and Terng, 1983]. Let M™ be a closed minimally immersed
hypersurface with constant scalar curvature in S™*t!. If § > n, then S >
n+1/(12n).

S. Chang [2] proved the following theorem by showing that § = 3 if § > 3
and M*? has multiple principal curvatures at some point.

THEOREM [Chang, 1993]. A closed minimally immersed hypersurface with
constant scalar curvature in S* is either an equatorial 3-sphere, a product of
spheres, or a Cartan's minimal hypersurface. In particular, R,, = {0,3,6}.

H. Yang and Q. M. Cheng [10] proved

THEOREM [Yang and Cheng, 1998]. Let M" be a closed minimally immersed
hypersurface with constant scalar curvature in S™*'. If § > n, then § >
n+n/3.

Let G ~ O(k) x O(k) x O(q) € O(2k + g) and set 2k + ¢ =n+ 2. Then W.
Y. Hsiang [4] investigated G-invariant, minimal hypersurfaces, M™ in S™*!,
by studying their generating curves, M" /G, in the orbit space S"*!'/G. He
showed that there exit infinitely many closed minimal hypersurfaces in S™*!
for all n > 2, by proving the following theorem:

THEOREM [Hsiang, 1987]. For each dimension n > 2, there exist infin-
itely many, mutually noncongruent closed G-invariant minimal hypersurfaces
in 8"t where G ~ O(k) x O(k) x O(q) and k = 2 or 3.

We studied a G-invariant minimal hypersurface M™, in stead of minimal
one, with constant scalar curvature in S"*!. In this paper, we shall prove the
following theorem:

THEOREM 3.2. If M™ has 2 distinct principal curvatures at some point p,
then S = n.

1. Preliminaries

Let M™ be a manifold of dimension n immersed in a Riemannian manifold
N™*! of dimension n + 1. Let V and {, ) be the connection and metric tensor
respectively of N"*! and let R be the curvature tensor with respect to the
connection V on N"*!1, Choose a local orthonormal frame field ey,...,en41
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in N**! such that after restriction to M™, the e;,...,e, are tangent to M™.
Denote the dual coframe by {w4}. Here we will always use i, j, k, ..., for indices

running over {1,2,...,n} and A,B,C,..., over {1,2,...,n+ 1}.
As usual, the second fundamental form h and the mean curvature H of M™ in
N™1 are respectively defined by

h(v,w) = (Vyw, eny1) and H =Y h(e;, e).

M™ is said to be minimal if H vanishes identically. And the scalar curvature
R of N™t! is defined by

R= Z(ﬁ(e;t- eplep, €A).
AB

Then the structure equations of N**! are given by

dwy = ZWAB Awp, wap+wpa=0,
B

1
dwap =Y wac Awes — 3 > Kapcpwe Awp,
& C.D

where Kapcp = (R(ea, es)ep, ec). When N™+! is the unit sphere S"*!, we
have

Kapep =0acdp — dapdne.

Next, we restrict all tensors to M". First of all, w,,,, =0 on M". Then
Zw(n+l]i Aw;j =dwnyy =0.
i
By Cartan's lemma, we can write
Winrti = = ) hijwj.
i
Here,
hij = ~wns1yi(e;) = (Ve ent1, &) = (Ve, €, eny1) = h(ej, €;) = h(ei, e;).
Second, from
dwi = Zwij I\w'j, Wiy +Wj1 = 0,

a1
1
dwi; =Y _wit Awij — 2 > Rijimwi A,
1

Lom
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we find the curvature tensor of M" is
(1'1) Rz‘ﬂm = Kijlm + hy h'jm = him hj!-

If M™ is a piece of minimally immersed hypersurface in the unit sphere S™*1
and R is the scalar curvature of M™, then we have

(1.2) R=n(n-1)-5,

where § =", h%; is the square norm of h.

Given a symmetric 2-tensor T = }_, ; Tj; wiw; on M", we also define its
covariant derivatives, denoted by VT ,V?T and V3T, etc. with components
Tij k. Tijaa and Tij ap . respectively, as follows:

(1'3)2 Tij.k Wi = dle + ZTSJ‘ ws; + z Tis Waj,
k 3 §
ZT"J\H wi =dTijx + ZTsj.k Wi + ZTis.k Wsj + Z Tij.s wsk,
! 8 ] 5

> Tijmpwp =T+ Y Toimrwsi+ Y Tispawsj + O Tijist ok + 3 Tij ks Wt-
P s 3 s 8

In general, the resulting tensors are no longer symmetric, and the rule to switch

sub-index obeys the Ricci formula as follows:
(1.4) T — Tijux = ZTsj Rgirt + ZTss Rk,
Tijktp — Tijkpt = ZTsj.k Reap + ZTEs,k Rsjip + z Tijs Rskap,
s s s
Tii kizm — Tigktmp = ETsj.kl Rgipm
s

+ Z’I‘is.k! stpm + Z:r;j,a[ Rskpm + ZTij.ks Rs!pm-
§ 8 s
For the sake of simplicity, we always omit the comma (, ) between indices in

the special case T = Ei’j hijwi w; with N*+1 = gn+l,
Since 3¢ pp K(n+1)icpwe Awp =0 on M™ when N™*+! = §7+1, we find

d Zhijwj =Zlhﬂw,[/\wi,'.
J 2+
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Therefore,
Zhijr wAwj = Z (dhij + Zhu wy + Z hit w;j) ANw; = 0;
al J l l

i.e., hyj is symmetric in all indices.
Moreover, in the case that M" is minimal, we have

(1.5)2 hiju = Zfluﬂ = Z {huu + Z(hmiRm!ﬂ + hi’rnRrruﬂ)}
[ 1 1

m

= (ﬂ. - 1)hij + Z {_hmihmthtj -+ h'lm{(smj(szt - Jrnléij + h-mjh"ii - hmihu')}

l.m

= nh;; — Z himbmihi; = (n — S)hi;.

Im

It follows that

(1.6) %AS = (n—S)S+ 3 hZ).

il

2. G-invariant Hypersurface in S"+!

For G ~ O(k) x O(k) x O(q), R"*2 splits into the orthogonal direct sum of
irreducible invariant subspaces, namely

R ~RFaRF @ R = {(X,Y, 2)}

where X and Y are generic k-vectors and Z is a generic g-vector. Here if
we set # = |X|,y = |Y| and z = |Z|, then the orbit space R"*?/G can be
parametrized by (z, y, z): =, y, 2 € R+ and the orbital distance metric is given
by ds® = dz? + dy? +dz>. By restricting the above G-action to the unit sphere
S+l ¢ R**+2, it is easy to see that

§"MYG =~ {(z,y,2): 2 + ¥+ 22 =1; 2,9, 2 > 0}

which is isometric to a spherical triangle of $?(1) with 7/2 as its three angles.
The orbit labeled by (z,y, 2) is exactly S¥~1(z) x S*~!(y) x §971(z).

To investigate those G-invariant minimal hypersurfaces, M™, in §"t! we
study their generating curves, ¥(s) = M™/G, in the orbit space S"*!/G [3, 7].
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LEMMA 2.1. Let M™ be a G-invariant hypersurface in S"*'. Then there is
a local orthonormal frame field ey, ..., e,+; on 8" such that after restriction
to M™, thee,,..., e, are tangent to M"™ and h;; =0 if i # j.

Proof. Let (Xo, Yo, Zo) € M™ C S™+! with z = | Xo|, y = |Yo| and z = | Zq|
and choose a local orthonormal frame field on a neighborhood of (Xy, Ya, Zo)
as follows.

First, we choose vector fields ui,..., k-1, ¥1,..., V-1, Wy,...,Wg—1 ON &
neighborhood U of (X, Yo, Zy) in the orbit S¥~(x) x §¥~1(y) x §91(z) such
that:

(1) @y,...,uk~; are lifts of orthonormal tangent vector fields u;,...,ux-; on

a neighborhood of Xj in §57'(z) to %~ '(z) x §5(y) x §97!(z) respectively,
(2) ©1,..., 0k~ are lifts of orthonormal tangent vector fields v,...,vx—) on

a neighborhood of Yy in S~ 1(y) to S¥~!(z) x S¥7'(y) x §97(z) respectively,
(3) wy,...,wy— are lifts of orthonormal tangent vector fields w,,...,wg_y on

a neighborhood of Z; in $97'(2) to §*~*(x) x §*~1(y) x §77*(z) respectively.

Second, let ¢(t) = (c1(t), ca(t), cs(t)) be a unit speed curve in S"*'/G or-
thogonal to the curve v(s) = (z(s), y(s), z(s)). Foreach p= (X, Y, Z) € U,
let F(p, s) and &(p, t) be the horizontal lifts in S™**' of ¥(s) and ¢(t) through p
respectively. Then we know

F(p, s) = (:r(s)%, y(s)g, z(s)%) and ¢(p,t) = (cl(t)%, cg(t)%’ c;,(t)%)
and so,

z
0.9 = (FOX &L 202) ma 260 = (40T 40T, 40T ).

Third, we extend these vector fields over a neighborhood of (X, Yo, Zp) in
S™t1 as follows:

(1) we translate y,...,Uk—1, V1,...,Vk=1, Wi, ..., Wq-1 Euclidian parallel
along 7.
(2) next, we extend Ty,...,Uk—1, V1y... U1, Wiy---,UWg—1, 7, C OVEr a

neighborhood of 5! properly.
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Then these extended vector fields @y, ..., Uk—1, V1y.evvy Uke1, Wiyeeo, Waa1, 7'y C

is a local orthonormal frame field in S™*!. After restriction these vector fields
to M™, Up,... U1, V1y---y V=1, Wi,...,We—1,7 are tangent to M™. For
convenience, we write them as e,..., e+ in order.

Let &;(u) = (a;(u), Y, Z) be a curve in ¥~ (z) x §*~1(y) x $97!(z) through
p such that &;(0) = (a}(0), 0, 0) = u;(p). Then,

ai(u) Y Z
9, v 202,

-2

(&(u),s) = (x(s)

and

(), ¢ ((t) (),Cz(f-)gyca(ﬂ)é)-

It implies that

F(@w) = (6042, (o), 2607),

Zaitut) = (4022, 607, 40Z).

Let V and ¥ be the Riemannian connections on $"*+! and R™+2| respectively.

S =T
Then since V=V , we have

A (29 o, 00) = {Z0ap) 7O,
| = {19 @0, o)}T - {4 ﬁi(P)}T - “"io) ()
and so,
@) = (T @) = (5o, Wae ) = =50,
Sissilagly, we linve
- his—14iyk-145) = (Vo ¥, €) = %%
hoak—zrias-2ip = (Vagyity &) = =20,
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And, since V.ypyy’ = (27(0),4"(0). 2(0)) on $7+1/G,
(24) han = (vﬁ""fﬁ, E')
X
= (O VO O GOF 405, 40D)

=2"(0) ¢} (0) +9"(0) c3(0) + 2" (0) ¢4(0)

= (("(0),3"(0),2"(0)), n)

= (VT"Yle n)= Kg(’)')s
where n = (¢1'(0),¢2'(0),¢3"(0)) and &,4(v) is the geodesic curvature. Recall

that
v(s) = (sin7(s) cos f(s),sinr(s)sinf(s), cosr(s)).

Then, we have
dr d dﬁ' ad

7(s) = dsdr ' ds 80’
where 9/0r = (cosrcos@,cosrsiné, —sinr) and 9/98 = sinr(—sin#, cos 6, 0).
Thus, we see
" a9 0
9, _ 2 _ o2 o 9.
Iarl 1, | | sin®r and <6r’ 69) 0.

And we see

. dr\* [(do\? o . dr\* [de\?
1=Y(s)2= (= — ) |=2=(= — | sin®r.
)l (ds) +(ds) |39| (da) +(ds) ST
Hence, we obtain

d df
cosa = (v, 81‘)/ ’|| —: and sinazgsinr,

where a is the angle between the curve v and the radial direction @/dr .
Suppose S™"*!/G is orientated by the frame field {(8/9r), 1/sinr (8/86)}
and U = (8/8r) x 1/sinr (8/06). Then we have

_ cUxy=lx({l 48
n=UxT=Uxx ﬂUx(ds6r+dsaﬁ'

_— 1_@12 1 r@i
" sinrds 960 ds Or

= %E (—sinf, cos@,0) — sin r:—i (cosrcos#, cosrsinf, —sinr)

= (e1'(0), ¢2(0), ¢3'(0)).
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Thus, we get

K’g('T) = (v‘.v"Y’a “)
(v drd df a _l_dri . df o )
=V EE_*_Eﬁ ! sin'ra@ﬂ_smrgg
de

(8]
= — +cosr—.
ds €0 rds

Therefore, from (2.2), (2.3) and (2.4) we obtain

/
t
h,-z-=—cl(0) =cosr@ ;?.nﬂﬂ,
T ds  sinr ds

c4(0) d0 cot@dr
hk—14i) (k=140 = — 2y = cosT R e

(2.5) g c4(0) sin® r df

hk—2+iy(2k-24i) = — : = o

da de
B = Kg(y) = T + cosrgg,
L hij=0, ifis#j

The proof of Lemma 2.1 is complete.

LEMMA 2.2. Let M" be a G-invariant hypersurface in S™*! and let {e4}
be the local orthonormal frame field on S™*! in Lemma 2.1. Then,

(1) all h;j; = 0 except when {3, j,l} is a permutation of either {i,i,n},
(2) all hiji;n, = 0 except when {i, j,1,m} is a permutation of either {i,i,j,j}.
Proof. (1) Since h,j is symmetric in all indices, it suffices to show that

hiji=0if i < j <land {i,j.1} # {i,i,n}.

(l.a) Casel. j#i: Lemma 2.1 implies that h;; = 0 and

(26)  hi = er(his) + Y hojwsile) + D hiswajler) = (hy; — ha) wyiler).
R £l

Since hy; = hy; if 4,5 < k-1, (2.6) implies h;;; = 0 for all [,
fk<i,j<2k-2o0r2k—-1<ij<n-1, then also h;j; = 0 for all L.
And, ifi <k —1and k < j <n, then for all [ (> i) we have

(2.7) i = hy; = e(hii) + (hii — hu) wa(es) = (hii — hu)(Ve, i, &) = 0,
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since V. e; = 0 by the Koszul formula. In the similar cases, we also have
hijt = 0.

Moreover, if j = [ = n, then hinn = hnpi = €i(hnn) = 0 since hy,, is constant
on each orbit from (2.5).

(1b) Case 2. j=1i and | #n: Since hy; is constant on each orbit,

(28) hijl = hyi = el(hii) + Z hg W,g;‘(e{) + Zhis Wei (e[) = el(hﬁ) =0,

Therefore, we see all h;;; = 0 except when {7, j,l} is a permutation of either

{i,i,n}.

(2.a) Case 1. i,j,1,mare distinct : Without loss of generality, it suffices
to show that h,‘jgn = h,;_,',,( = 0 and h,‘j{m = 0 for all i, j, I, m such that
i, 7, L, m < n.

By using (1), we easily see that

(2.9)hij1n = enlhij) + Zhsjl wsi(en) + Z hist wsj(en) + Zhijs wsi(en) =0,

since 2, j, | < n and i, j,[ are distinct.
And, from (1.4) and Lemma 2.1 we also have

(2.10) hijnt = hijin + Z hsj Rint + Z his Rejnt = Rjj Rjint + hii Rijni
8 8
= 0.
If ¢, j, l, m < n, then from (1) we can easily see

(2-11) huj!m = em(hiji) + Z{hsjl Wsj(em) + hig Wsj (em) + hijs wsl(em)}

= 0.

(2.5) Case 2. j#1: Let us show that hﬁj[ = hjgﬁ = hjjj1 = h[jjj = 0.
If j # 1, then

(2.12) hisjt = hist; = O hai Ruije + Y Bis Reijt = 2hii Risst = 0.
S s
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Hence, we may assume | # n. So, e;(hi;;) = 0 since h;;; is constant on each
orbit. Hence, we have

(2.13) hisjt = er(hiig) + D haijwai(er) + Y hisjwsi(er) + Y hass wsjer)
g s 4
= 2hjij wji(er) — hiinwni(er) =0,

since h;j; = 0 if i # n and wy;(e;) = (Ve en, €;) = 0 from (2.1).
And since j # [, from (1.4), Lemma 2.1 and (2.13) we also have

(2.14) hjiis = hijii = hijit + Z hsj Rgiti + Zhis Rsjii
= higg + h:‘j R + his R:jh‘ =0.
Moreover, if j # n, then

(2.15) hjiz = ei(hjjz) + Z hgjj wsj(er) + Z hjsjwsj(er)

s s

+ Z hjjs wsj(er) = 3hjjn wnj(er) =0,
s
since wy;(e;) = (Ve,en,€;) =0 from (2.1). And so,
(2.16) hyji; = hjjs+ 3 hej Rejiy + O hys Rajij = hjju + 2hy5 Ry
s s
=0.

Hence, we have that if j # n, then hj;; = hy;;; = 0.
If j = n, [ +# n, then from (1),

(217) Pinnn = Pnnnt = el(hnnn) 4 Z Psnn Wsn(ei) = z hnsn wun(el)
s s

+ Z hnns wsn(el) — ei(hnnn) =0.
8

since €;(hpnn) = 0 since hpnn = €n(hnn) is also constant on each orbit from
(2.5). It completes the proof of Lemma 2.2. O

Under such frame field in Lemma 2.1, we have

(2.18) ek(hii) = hix — Z hsiwsi(ex) — Zhiswsi (ex) = hisic-
8 5
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Hence, in the case M™ is minimal, by differentiating 3" hmm = 0 we have

(2.19) > hmmij = 0.
m
In the case S is constant, by differentiating 3, . h7; = S twice, we have

(2.20) Z(hijhijkf + Z hijk hiji) = 0.
g

i,

3. G-invariant Minimal Hypersurface in S"*!

Throughout this section, we assume that G ~ O(k) x O(k) x O(g) and M™
is a closed G-invariant minimal hypersurface with constant scalar curvature in
S™+1. Let {ea} be the local orthonormal frame field on S™*! in Lemma 2.1.
For convenience, we rewrite

hu = =hp_nr-1) =hu=A,
(3.1) hik = -+ = hag-2)2k—2) = haz = Ag,
hiak—1)2k-1) = " = Bn—1)(n—1) = haz = Az.
Then
Zh,, = (k — 1)hy1 + (k — 1)haa + (g — 1)haz + hpn =0,
(3.2)

Zh?i = (k= 1)k, + (k= 1)h3; + (¢ = Vh33 + b3, = S.

By differentiating the both sides of (3.2) with respect to e, respectively, we
have

(3 3) (k - l)h'llﬂ + (k - 1)h2'3n + (q - 1)h33n + hnnn &= 03
(k = l)hl lhIIn 3 (k = l)h22h22n * (q == 1)h33h33n + hnnhmm =0.

By differentiating (3.3) with respect to e, respectively, we have

(k - 1)hl Inn + (k - 1)h22nn “+ (q - l)hli.'{nn + hnnnn = Oa
(3.4) (k = l)hllhllnn £ (k' = 1)h‘22h22ma + (q - 1) 33h33nn + RnnPnnnn
+(k — 1)h%,, + (k= 1)h3,, + (g — D)A33, + hipy =0,
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since

en(hiin) = Riinn — Z{hsw"n wSI(eﬂ) + hisa wsi(en) + hiis '-U'sﬂ(en)} = Rsinns

L]

From (1.5), we also have
(3.5) hiitt + haiza + 4+ Riinn = (0 — S)hys.
Since S is constant, from (1.6) and Lemma 2.2 we have
(3.6)  3(k—1)h3,, + 3(k — 1)h3y, + 3(q — 1)h3s, + b, = S(S - n).
Here, if i # n, from (1.3) we know
(3.7) Riin = Rini = €i(hin) + Y _ hanwsi(e:) + hiswon(€:) = (hnn — his) wnies)
and
(3.8) hisii = €i(hazs) + D _{Roiiwsi(€s) + hisitsi(es) + hiiswsi(e:)}
= 3hiin w,,.,(e:).
Moreover, if i, j # n and i # j, then
(3.9) hiij; = ej(hii;) + Z{hsijwsi(ej) + hisjwsi(e;) + hiiswsi(e;)}

= hiin W'nj(ej)-

Now, to prove Theorem 3.2 we need the following lemma.

LeEMmMA 3.1. With notation as above,
(1) If hyy = hyy = A at some point p, then

(1=2X)8 + (k= 1)AA+ (g = DAA+ kA + 002 =0.
(2) If hyy = hypn = A at some point p, then

(1=2X )8+ (k= DMA+ (g — DAIA + kAT + 02 = 0.
(3) If haz = h,n = X at some point p, then

(1=2X%)S + (k= DAIA+ (kK — DAZA 4 gAt + nA? = 0.
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Proof. (1) Suppose hyy = hp, = A at some point p. From (3.7), we have
(3.10) hi1n(p) = 0.
Using (3.8) and (3.10), we have at p
(3.11) hii11 = hize = -+ = hyyn-1y(n-1) = 0.
Hence, (3.5) and (3.11) imply
(3.12) hiinn = (n = S)hnn
and (1.4) implies
(3.13) har11 = Biinn + (Brn — h11)(1 + Aanhi1) = hiian-
Since 3, ; hZ;, =0 at p, from (2.17) we have
(3.14) (k= 1)(h11h1in1 + hoe he211) + (¢ — 1)has hazin + hnn hanin = 0.
Then, by using (1.4) and (3.11) we know
(3.15) haoi1 = (A2 = A)(1 4+ A2 A) and  hazip = (As — A1+ Az ).
Hence, (3.14) and (3.15) imply
(3.16) (k—1)A2(A2—N)(1+A2 N)+(q—1)As (As—A)(1+A3 N)+ A% (n—S) = 0.
Here, since
(3.17) kA+(k—DAa+(g—DA3=0 and kX +(k—1)M]+(g— 1A =S,
(3.16) becomes
(3.18) (L=202)S+ (k- DA3A+ (g — DA3A + kXt +nAZ = 0.

(2) and (3) These proofs use exactly the same argument; one just replaces

hi1 by has and hgj throughout, respectively. It completes the proof of Lemma
3.1. O



ATheoremofG-invariantMinimalHypersurfaceswithConstantScalarCurvaturesinS™+t! 395

THEOREM 3.2. If M™ has 2 distinct principal curvatures at some point p,
then S = n.

Proof. Suppose M™ has 2 distinct principal curvatures at p. Consider now
the four cases in the proof of that theorem for some A # 0.

Case 1. hga = haz = hnn = A (3 hy1) at the point p. Then (3.2) becomes

(k - I)hll + (k = l)hZ?- + (g — 1)haz + hpn = (k- 1)/\1 + (k +q - 1)/\ =1,
S = (k— 1)k, + (k — 1)h3, + (¢ — 1)h3s + h}, = (k= DA + (K + g — 1)A%

From the above,

k+qg-—1

3. =
(3.19) A1 e —1

A

And so, since 2k +q¢—2=n

(k+q-1)?

(3.20) S={(k_1)w+(k+q_l)}Az=n(k+q—1)

2
1 A

Moreover, by substituting (3.19) and (3.20) for (3) of Lemma 3.1

0=(1-2))8+ (k—1)(A} + A)A + g\ + nA?
n(k+q-1) (k+q-1)*

— _ 2
={1—2x) k=1 (k—1)3

A2+(k—1}(1— )A‘+qA4+nA2.

And so,

0=(1-223)nk+q-1)(k=1)+{(k—1)% - (k+q—1)%}2% + (gA? + n)(k — 1)?
=(k+g-1{-2n(k-1)+ (k- 1)~ (k+q—-1)°}N* +n*(k - 1)
=—(k+q-1n°A% +n%k-1)

since 2k+gq—2=nand k4+g—1=n—k+ 1. Hence,

k-1
3.21 2__- -
(3.21) A k+qg—1
and
(3_22) S = M,\Z =n

k-1
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M" = Sk—-l k-1 x Gk+a-1 k+g—1
V. n V. = '

Case 2. hyy = hog = hpp = A (# has) at the point p. Then (3.2) becomes

ie.,

(2k—1)A+(g—1)A3 =0,
{ S =(2k—1)A + (g— 1)AZ

From the above,

2k —1
(3.23) =——h
And so
(3.24) S——q’_1 A%

Moreover, by substituting (3.23) and (3.24) for (1) of Lemma 3.1

0=(1-2X3)5+ (k- DA+ (g — D)AA + kA 4+ nA?
n(2k — 1) (2k — 1)3

4 2
P~ (q—1)3'\ + nA-.

=(1-2)?) N4+ (2k—-1DA—(g-1)
And so,

(325) (k-1 {-2n(g-1)+(g—1)* - (n—q+1)*} 3> = —n*(g—-1).

Hence,

2_ g—1
(3.26) Af= %—1'
and
(3.27) S= E%Az =n
ie.,
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Case 3. hyy = has = X1, haz = hpn = A at the point p. Then (3.2) be-

comes

(2k —2)A1 +gr =0,
S = (2k — 2)A7 + gA%.

From the above,

___ 4
(3.28) A= o — 2,\.
And so
ng o
3.29 =
(3.29) (n—gq)

since 2k — 2 = n — g. By substituting (3.28) and (3.29) for (3) of Lemma 3.1,
0=(1-2A3)8+ (k= 1)(A3IX 4+ A3N) + gt + nA?

3
=(1-2)2) 2 A2 9k — 1) T —

4 4 2
2k -2) (2kk2)3'\ +gA" + nAc.
And so,
(3.30) {—2ng(n—q) - ¢* +q(n—9)*} * = —n*(n - q).
Hence, we have

(3.31) M= ——=,

and

(3.32) S=—2 _)\=p

M'rJ:S?k—Q( 2k—2)x39( E)
n n

But, it is not G-invariant.

i.e.,

Case 4. hyy = hga = hag = A (# han) at the point p. Then from (2.5), we
have at p

df  tanbdr _  df cotbdr _ sinrdf

ST — —— — = COST — — = — —.
ds sinr ds ds sinrds cost ds
It implies that

CO

dr do
d—s—{) and ZS.

which means that hy} = hoo = hgg = h,, = A =0at p. It is contrary to the
hypothesis. We complete the proof of our theorem. O

=
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