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REMARKS FOR BASIC APPELL SERIES

GYEONG-SIG SEO anD JOONG-SO0O PARK

Abstract. Let k& be an imaginary quadratic field, $ the complex upper
half plane, and let 7 € kN$, ¢ = exp(7iT). And let n, ¢ be positive integers
with 1 <t <n—1. Then q%*%Jr% 125 , (1—g"m=t)(1—gnm—(n=1)) js
an algebraic number [10]. As a generalization of this result, we find several
infinite series and products giving algebraic numbers using Ramanujan’s
191 summation. These are also related to Rogers-Ramanujan continued
fractions.

1. Introduction

Ramanujan developed g-series and theta functions and discovered several
new and profound theroems in the theory of theta functions. This paper is
related to the Ramanujan theta function

o0

(L1)f(a,b) =1+ Y (@)™ 5 (@" +vm) = > ™5 ™5,
m=1

m=—0oo

where |ab| < 1. To facilitate the product representations of the theta functions,
we introduce the standard notations;

(a)o = (a;q)o:=1,
(a)n = (avq)n = (17(1)(17&(])"'(17&(1“71)7 n > ]-7
(@)oo = (a;9)00 := nleréo(a; D, g < 1.

Then Ramanujan theta function has an infinite product form:
(1.1.1) fla,b) = (—a; ab) oo (—b; ab) oo (ab; ab) s .

In this paper for an imaginary quadratic field k, we fix 7 € kN $. Then
lg| < 1.
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For |2| < || < 1, the following is called Ramanujan’s 11 summation [2]:

(a)n n__ (a2)00(q/02) 50 (q) 00 (b/a) o
(12) 2 B = D bladn B la/a)

Theorem 1.1. Let k be an imaginary quadratic field and 7 € kN $. For
rational numbers [ and t, if 0 <l —1t < 1, then

ey (L—gmhH(1—g' 707 & M ntm
1-gH1—g' H(1—q) 2 (@) (g D"

n,m=—oo
(@n

(=l (4= 1-— l’t En,,oo @ D), q"
1—1
= PO =,

_ t(t 11— 1(1110—0[ 1—q"t(1—

1—(]" l 1_qn 1+l)

= g

qn 1+t)

n=1

is an algebraic number. In fact, it can be expressed as the product of Ramanu-
jan theta functions:

qt(t—l);l(l—l) f(—qt; —q

Theorem 1.2. Let k be an imaginary quadratic field and T € kN $). For
rational numbers | and t, if 0 < [,t,l +t < 1, then

ARy Z ‘1‘1—_?‘1)7” I(n—m)+m

(G ODm

0o (¢%@)n In
q%(2l+t—1) 2o @) 4
oo (¢5Dn (1—t—1)n
ano (6:9)n ¢ )
_ q2(21+t 1)H 1_qn - l)(l—q
qnfl)(l _ qn71+l)

n,m=0

n—1+t+l)

is an algebraic number.
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Theorem 1.3. Let k be an imaginary quadratic field and T € kN $). For
rational numbers [ and t, if 0 <[ < 1, then

Li(i+2t—1) (1-¢h(1-q¢"h
(1—¢t)(1 —g*=1=t)(1 = ¢!*?)

Z (qt)m(qit)n I(n—m)+m

(q1+t+l)m(q2—t—l)nq

q

1—t (@9n
%l(l+2t—1)(1 q )Zn**m (2t Y, q"
1—t—1
1=+ T e

_ % (46— l)H 1_qn t— l (1_qn 1+t+l)
l_qn t l_qn—1+t)

q

is an algebraic integer.

Using these identities of Theorem 1.1, 1.2 and 1.3, we present the relations
between them and Rogers-Ramanujan continued fraction R(7):

qs
R(q) = S — lgf < 1.
1+
1+

2

1+---

s}

In [9], [10], D. Kim and J. K. Koo discussed and proved the expanded basic
Appell series, and F. H. Jackson defined the four functions ([7], [8])

o o= (@ D) (D)0
®Wla;b, b5 cia,y59) = ZZMSU Y
m=0n=0 m n
ShS +n(0)m (V)n
@a;b, Ve, sx,y5q] = ZZ (@)mn( My
m—0 n—=0 (©)m()n(@)m(@)n
S D (B)m (1)

O a,a’;0,V;c2,y;q] = (@) (@) (O) mrmy
| b= 2 e,
®Wasbic sz, y:q) = QLEIOLE S

| vl = 2 2 @ @@ !

Also we can see the following identity due to G. E. Andrews [1]

(1.3) SO /a5 b,0;0b 2, 5 q) = (bf;gf)@;fé/)g“

This will be a main tool for our result in §5.
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2. Infinite products

Let a = (8 Z) be a triangular matrix with integral entries and have

determinant |a|. And define

) s

( ) o

with A(1) = (2m)2¢? [[5_, (1 — ¢*™)?*. Then we recall the following facts.

Proposition 2.1. For any 7 € kNS$), the values ¢, () are algebraic integers,
which divide |o|'2.

Proof. See the Theorem 2 and 4 of Chapter 12 in[12]. O

Proposition 2.2. Let 7 € kN $. Then

Vagk [ +q™),  a #1200 — g,

m=1

o0
H @™ Y and q_i e (14q¢m)t

M‘H

are algebraic integers.

Proof. See Theorem 2.2 in [9]. O

Proposition 2.3. Let k be an imaginary quadratic field. And let n be a
positive integer and a be an integer such that 1 <a <mn—1. If g [[°_ (1 —
¢"™= ) (1 — ¢"™~ (=) js a nonzero algebraic number for each T € kN $, then

C]t“ (1 +qnm—a)(1 +qnm—(n—a))

m=1
is also an algebraic number.
Proof. Since 27 € kN §H, ¢*« [[oo_ (1 — ¢>"™23)(1 — g?»m~2("=2)) g an

algebraic integer.
Thus the following

tha, Hﬁ:l(l _ q2nm—2a)(1 _ q2nm—2(n—a))

¢ T (g ) (tgrm =) =

m=1

gta [T—1 (1 = gnm=a)(1 — gnm=(n=a))

is an algebraic number. O
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3. Klein forms

For an integer N > 6 and an integer r which is not a multiple of N, let
X, (1) be the function defined by

X ( ) X ( N) 67271%‘7“7125\,]\]71) Nﬁl K’I",S(T)
r\T) = Ap(T, = )
s=0 KlaS(T)
where K, ,(7) are Klein forms of level N([3], [4], [5], [6] and [11]). In a neigh-

borhood of the cusp ico of I'(2N?), the function X,.(7) has an infinite product
expansion:

T conep-m 1 — g7 l—qu’“ 1 — gm+r
X (5)=q 2N H ~ 1)< N +1)'
2 1—gq o m=1)(1 — gNm+1)
Replacing ¢ by q%, we obtain the usual form
T c-net1-m 1 — g% 55 (1—¢" 7)(1—¢mtF)
%(ﬁ) =q el | ( m_i) I
=g~ 22 (1—gm V)1 —gm"w)

Ishida proved that the coeflicients of X,.(7) at infinity are rational numbers([4]).
Let I'(N) denote the principal congruence subgroup of level N of SLs(Z),
in other words

I'(N) = {<a Z)ESLQ(Z)laEdELbECEO mod N}.

Let Fy be the field of modular functions of level N with rational Fourier coeffi-

cients. Denote I be the set I'/{+ <(1) (1))} (respectively, T') if (_01 _01> el

(respectively, if <_01 _01> is not in I" for a congruence subgroup I'. Then

[Fn: F1] =['(1) : T(N)] < co. Since Fy = Q(j), f is algebraic over Q(j) with
j-invariant for each f € Fy. Thus if @ € Nk, then f(a) is algebraic over
Q(j()) so that f(«) is algebraic over Q. Thus we get the following:

Lemma 3.1. Let 7 € kN $H. Then the values of

1) (r1— _ _ Nm—r _ Nm+r
coneain 1 —¢" H (1—g¢ )1 —gq )

X,
( ]__q ]__qu 1(1_qu+1)

.
5) =q

are algebraic numbers with N > 6.
Theorem 3.2. Let 7 € kN H and n,t positive integers with n > 1. Then

n L 2
the values of g1 =5+ 7 [[°°_, (14¢"" ") (14"~ ("=1) are algebraic numbers
with 1 <t < n and double signs in same order.

In the above product, the exponent of q can be written as second Bernoulli

polynomial By(z) = 2% — 2 + 7, ie, {5 — 3 + ﬁ = %BQ(%)
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Proof. Note that q12 Bt b [T (1 — g™ t)(1 — ¢"™~(=1) is algebraic
number when n = 2,3,4,5([10]). Hence we may consider the cases n > 6.
It is easy to see that

2 1) 5 t g% (1—g q2i(l—q™)
— 1 _ qnm 1 _ qnm—(n ) —
s ari(l—gqrm)

o

o
2

L
2

to

(3.1)

I
—

m

is an algebraic number by Proposition 1.1 and 1.2. Similarly we get that

2
t
+L

n

.\:\§
m\ﬁ

(3.2)

::]8

(1 _ qnm—t)(l _ qnm—(n—t))

m=1

(;:: =) (=)

is also an algebralc number for an even integer n. By Lemma 2.1, we know
that

¥

n_ 2 T
(3.3) gz 2t H (1—¢" (1 - qnmf(n—t))
m=1
= gt it [T -g (A - g
m=1

where o is an algebraic number and ¢ > 2. From (3.1)~(3.3) and Proposition
2.3, we get the theorem. O

We shall also have occasion to use the Gauss polynomials:

(@) m
[m} - { (()qn(q)m:, (0<n<m)

n otherwise.
We define
=3[
k=0
Qn(ur,ug, -+ ug) = Z Lu? T
it Fr=n (q)” o (q)rk
and

DED) (aq)" = —<———
ne0 (Q)n 00 00
By Theorem 3.2, we get the following:

_(ﬁ_%+2n2)W(q n q%? l)zq_(ﬁ_%—i_% Zifm(qﬁil) mfmT’k
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and k k k k
£1 _ k1 Es _ ks
q* 5:1(%*2?4’:52) i Qm(q "7q1 ™yttt aqnvql ")
m=0 (q)m

are algebraic numbers, where 1 < k. k; < n and n,k, k; € Z.
For a lattice L in C, the Weierstrass gp-function is defined by

1 1 1
L) = — -
@(T, ) 7_2 + Z {(T _ w)Q w2}
weL—{0}
for 7 € C. Furthermore the Weierstrass p-function is defined by

L) = ERURPEES 1E
o(r;L) =71 H (1 w)e 2
weL—-{0}
for 7 € C and it is an odd function. Taking the logarithmic derivative yields
the Weierstrass (-function

=Bl F (ki)

for 7 € C.

Differentiating the function ((7 + w; L) — ((7; L) for any w € L yields 0
because ('(7;L) = @(7; L) and the p-function is periodic. Hence there is a
constant n(w; L) such that {(7+w; L) = ¢(7; L)+n(w; L). For (r1,r2) € Q*>—Z2,
we can choose integers u, v, N such that (r1,r2) = ( ). So, we define a Klein
form K, s of level N by

K, (1) = ¢~ awz (umtvm) (urtv) o »(7)

RO
NN

where 7 € C, 1 = n(7;[7,1]), 72 = n(1;[7,1]) and oy = o(F7 + %;[7,1]).
Note that 7; and 7 satisfy Legendre relation no7m — 1y = 2mi.

As in [11], we use £x » for the Klein form K, , of level N, the Siegel
function is defined by

9.3 (7) =t ) (D (7),
where 7 € C and 7(7) is a complex valued function defined as (1) = 2mie i
[, (1 —e*™™™)2 And n**(7) is a modular form of weight 12 for I'(1).
Remark 3.3. In this notation, we can rewrite the function defined by Ishida

r 4 r
as X,(Z) = IF0 (Nry = &0 (£7). In this sense, the Siegel function can be

g Yo 2 bt o)
written as
o0
nr n_t 12 _ o
9is0(5) = —F T [T A= )1 = gmm=7Y),
m=1

TIT

where ¢ = e and it is a function in Theorem 2.2. Let $) be the complex
upper half plane and d be a positive square free integer. It is well-known fact
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that the value g, r,)(7) for the Siegel function g, ,,) and 7 € N Q(v—d)
is an algebraic number. Using this, we can prove Theorem 3.2 as a modular
function method.

4. Proofs for our main theorems

In this section, we prove our main theorems introduced in §1. To expand
the definition (a;q),, for a negative integer n, we redefine it as (a),, = (aq), =

(;9)00  _ (a)oo
s = g for n € Z.

Proof of Theorem 1.1. Let | and t be rational numbers and 0 < [ —¢ < 1.
And g = exp(wir). In (1.2), consider the case z = ¢,

O (b0 ) oo (D)oo (0 1q)ox
1-a) (1-aYHags
(1—ba~lg 1) (1—ba g V)(b)
B 1 (@)oo
a(l—ba=1qg™1) (b)eo

D S e S

Then |¢'*'=t| < |¢| < 1. Applying a = ¢’ and b = ¢*! and z = ¢ in (4.1),

> tn N 1_l too
> (¢") 1-q) (¢)e

(qz+1)nq TR0 — ) (@)

n=—oo

Hence, we get

too i 1 — -t e tn "
(4.2) (@) _ d'(1-q )n;oo(;?g)nq

Similarly considering a = ¢*~!,b = ¢>~* and z = ¢ in (4.1),

i (@ Dn o (1=¢"" ("

A @0 T T ) ()
and

1-1 1-lq1 _ -t [eS) 1—1
*3) . )Z EZQ—t;:qn.

(ql—t)oo (1 _ql—t)

Furthermore, since |¢?>~!*!| < |q| < 1, letting a = ¢~* and b = ¢*~! in (4.1),

n=—oo

i (¢ )n . (1-g"1=¢""1 ("o

(¢*n (1=¢"=") (¢ oo

n=—oo



Remarks for Basic Appell series 471

So,
(4.4) (¢ o _ (=g i (@ n
(@ oo A=g)(1 =g = (>
On the other hand, since |g| < 1 by (1.1) and (1.1.1),

@5)  f=a" =)= Y (—)"EC T = (0N ("o (oo
46)  f(=¢,—¢"= D (1" = () e (g o (0) -
Then using (4.2) and (4.4), :
(4.7) [T, S ) = (= (1 e

= ~E AT Sime oo bl 0"

Now by (4.2) and (4.3)

(')oo @ o =g 2one oo ((g+)17)1 q"
(4.8) @)oo (@ Voo (1—¢) T EZ;J;:Q”
and from (4.5) and (4.6)
(¢)oo(@" Noo@oo f(=d',—¢"7H)
W @l S
anfoo( 1>n Tn(n—1+2t)
(gt

Through the above, we get three identities. It is sufficient to show that the
t(t—1)—1(1—1)

result multiplying the equations of (4.7)~(4.9) to ¢ 2 is algebraic num-
ber. Using the simplest form it is just

ww-n-1a-y ~r (1—¢" (1 — g1
% H( 71)( - l)
(=g~ ")

n=1
_giitE ﬁ (1—q"—t)(1—q"—1+1)
gty L (L—gn (L —gn )
and by Theorem 3.2 both denominator and numerator are algebraic numbers
forr € kN $H. O

Remark 4.1. Theorem 1.1 gives the following identities between two infi-
nite series:

ial=—7 & (g n_(t)oo B =
1) T D T .

n—=—oo n=—oo
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Proof of Theorem 1.2. Consider (1.2) when b= g and |1| < 2] <1

= (a)n = (a)n (az)oo
(4.11) = o=
n;w (@)n ngo (@)n (2)o
because ﬁ = (ngzm — (g™ (1 ) ) for a negative integer n.

Since [ and ¢ are the rational numbers with 0 < ¢,1,t +1 < 1, we can check
the convergence condition and obtain (4.12) (respectively, (4.13) and (4.14) )
when a = ¢' (respectively, a = ¢ and t ) and z = ¢ (respectively, z = ¢'~
and z = ¢ 7t7"™) in (4.11) :

St t t4+1
12 > = e
- (") (1-hn _ (ql_t_l)oo
(*.13) 2 @D’
= (@)n a—t-1yn _ (6" Doo
(1) 2. T

Multiplying (4.12) by (4.13) and dividing (4.12) by (4.14), we obtain that

(4.15) ﬁ —¢" YA g (t“)oogq

1_qnl (1 — gn1+) (@)oo (" 1) oo

= Z Mql(n—m).i_m
m,n=0 (q)n(q)m
Z;L.O o%qln
ZZO 0 ((Q))n g(t=t=bn
G )

1tl)

Fld.—a )
Z(:,O:_oo( n" qz(n 1+42t+21)

Z?:_oo(_l) q 5 Z(n—1+421)
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where last equality is given by (1.2). Multiplying the factor ¢2z2+t=1) and
using Theorem 3.2 make our assertion true:

oo (qt)n In
L(2l+t—1) Zn:O (@n 4
S @qu—t—z)n

n=0 (g)n

Proof of Theorem 1.3. Now we put b = agz in (1.2):

—  (@)n ., (a2)oo(a™q27 )0 (g2) 0
(116) ) e Pl e

1—az(atgz™ Yo

1-2 (67'¢)x

Since 0 < I < 1, applying a = ¢*, z = ¢' (vespectively, a = ¢~* , 2'~! and

a=q' 7t 2 =q') gives us (4.17) (respectively, (4.18) and (4.19)).

00 4, N 1 — gmtt I=t=m) o
(4.17) ; (ql(-qrtlz)n ¢" = ((1 _qqm)> (q(ql_t)o)o ,
o0 —t n 1-n 1—gt)(1 =gttt i+ 00
(4.18) ; ((](2qt)l)nq( pn _ ( ‘(11)(_ qlsz) )(‘(lqt)zo :
oo 1=ty 1—gl—t oo
(4.19) ; ((éqzt)i ¢" = ((1 _qql)) (((]?+)l)oo
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In a similar way, we derive that

(4.20) ﬁ (L—g""H(1 =g ) (c,zl‘t‘l)oogqt“)oo

1L (1 —gn=t)(1 — gn—1+t) B (1) oo (¢") oo
_ (1 — ql)(l — ql_l) — (qt)n(q_t)m l(n—m)+m
T A g) = (1 — ¢ Z (q1+t+l)n(q27t7l)mq

(1-q'~) Xot o ity
(]_ _ ql+t) Zoo (@t Y _In

n=—o0 (¢ ), 4
f(ithrl’ 7q17t71)

f(=¢',—q'")
Eooii (_1)nqg(n—1+2t+2l)
= S (—1)ngE—120)

After multiplying ¢z'/(+2=1) and by using Theorem 3.2 again, we get the quo-

tient form of two algebraic numbers. Hence we are done.

Remark 4.2. (4.20) is different from (4.7) and (4.15). This is another
formula for theta series.

Now consider the Rogers-Ramanujan continued fraction:

1
qS
R(q) = — gl <1
1
+ 14---
First, let
[e’e} 2 0
q" qn(n+1)
G(q) := Z ——— and H(q):= . .
0 (G @)n "0 (@ @)n

Then it is the well-known fact that these satisfy the Rogers-Ramanujan iden-
tities ([13], [14]):
1 1

G(q) = = and H(q) = .
@ (4:4°) 0 (0% 0°) 0 @ (6% 0°) 0 (4% ¢°) o
Then Rogers proved that

R(q) =q

1H(g) 1 (456°)o(a"¢%)
Gla) 1 ()o@ P
in 1894 ([14)).
From the identities in this section, we obtain the following identities for

R(¢®) = g%

QR

gjw| ik
~—

~—



Remarks for Basic Appell series

1 2
by (4.7);t=—-,l= -
by (75t = 5= 2)
S (95:0)n . n
_a 2 Z":_O" ﬁq
¢ (1 +g7)— W (by (4.7);t =
LT

o (GDn(GDm

= (0%:9)n(a%5q)
1 53 n %5 m Lin—m)+m
=Y gs(mmm+ (by (4.15);¢ =

~ (GO Dm

n,J
2
S (qﬁ;q)nqgn 9
e S (by (4.15)it =1 = 7)
Lin=o (g 1"
S qqu)nqsn 3
25 =120 (G0 (by (4.15);t =

1
oo 5:q)n 5 5
Z” 0(‘(11151 q5

2
5

T+ i (g g;q)n(q’f,q) m et dm
1-q%) = @5n(a% Om
2
(by (4.20);t =1 = 3)
. (0550003 Dm 1nrim
q257 q5 5
(1—g?) w;oo (@%:0)n(a% ;1 Q)m
31
by (4.20);t = 2,1 = -
oy (4200 = 21 = )
ZOO, (Q‘NQ)nq*n

) (95;9)n
(1+ g5 +q% + q%) % (45:0)n 2p
2o (q%;q)nq

N (4%59)n(a%50)
1 53 n %5 m 2(p—m)+m
2 gzt (by(4.15);t =

475
1 2
Z ==
5’ 5)

2
l=—

5)
3 1
2l==z
5’ 5)
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DO (a%:q)n g

_ quf’ 1 . (qg,q)n .
(1+4q%) yooe (q;,q)nqgn
(45:@)n
3 1
by (4.20);t = =,l = =
(by (4.20);t = .1 = 7)

5. Appell series

Let
S (e;b,b5dsa,dse, fray, 2’y q)

LS O Dia @@
- m,g;,l:o @D @D @k @1 Pt Y (=)"(y)

=0Wie; b, v ez, y: g d;a,d; f127,y : .
From (1.3), we deduce that

and
D1 dd s o] = (@)oo (@)oo (d's/w) oo
P sl = s ) (5)oe

Let b=gB, 0 =¢B, d=q¢°, d =¢°, 2 =¢%,y=¢", w=q"

s=q% where B +D' =1, X+W=1,Y+S=1,B+D=1,B+X>1

and B+ B’ >1with 0 < X,Y,B,B’,D,D’,S,WW < 1 rational numbers.
Thus, we get the following:

S(g” 4" " WP P g PP X Y gV ¢ g)
o0 B’)

:Z(q

) (@) (0% ) (@ V)i (qP)

) (D (D k(D1 (@ FE )i (¢P TP )i

m,n,k,l=0 (
= 8" 6" 7547 10, ¢ a2V (7 TV qP ¢7  qPq" g
(qB+X) ( B )00( +Y- )OO(QD+W)OO(QD/)OO(QD 8- W)oo
(@PFB") o (%) 00 (4¥ )00 (4P HP") 00 (4 ) 50 (¢°) 00

_ 1— qB+B -1
- 1 — ¢gBtX-1
{Cuitaina P ot it i L i

o (q
(@B 1) (¢X) oo (¥ D“") (4" )00 (q%) oo

(g
_ (1—qB+B,_1>-f( B+X 1) ( ) ( B'+Y— X)

1 —gB+X-1 f(=¢B+B'~ )f( qX)f(—qY)

k(qD )i qu+Yn+Wk+Sl
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1— qB-‘,-B/—l

1— qBJrXfl

W(qB+B’—2’ q3—2(B+B’))W(qX—17ql—QX)W(qY—l’ q1—2Y)

'W(qB’—17 @' 2B W (¢BHX -2, 3—2(B+X)) | (¢B'+Y —X—1 g1-2(B'+Y-X))’

Since B, B’, X, Y € Q, we find N satisfying N = lem(Ny, No,--- , Ng) with
B+X—1:=% B =42 B +Y-X:=48 B+B —1:=43 X =&
Yy =2
N *
Here, M;, N;(1 <4,j <6) € Z.
Using Theorem 3.2,

(B'=X)(B'=X+1)=B'(B=Y)=XY (1‘IB+X1> .

q 1 ¢B+b—-
S(q® X,qB,qB 1q” W,quqD Y ,TqD”’ aX.q",dV,4% )

XM4N/N(QN)XMsN/N(ﬁ)X%/N(ﬁ)

is an algebraic number

Replace ¢ by ¢", we get that S, %t) , VVKE(L dbg have infinite product expansions

in a neighborhood of the cusp ico of I'(2N?). So we can deduce that special
cases of basic Appell series has an infinite product expansion in a neighborhood
of the cusp ico of T'(2N?).
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