d-ALGEBRAS WITH COMPLICATED CONDITION

Sun Shin Ahn and Gyeong Ho Han

Abstract

Any $B C K$-ideal of a d-algebra can be decomposed into the union of some sets. The notion of a complicated d-algebra is introduced and some related properties are obtained.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: $B C K$-algebras and $B C I$-algebras ([4,5]). It is known that the class of $B C K$-algebras is a proper subclass of the class of $B C I$-algebras. J. Neggers and H. S. Kim ([9]) introduced the notion of d-algebras which is another useful generalization of $B C K$-algebras, and investigated several relations between d-algebras and $B C K$-algebras. After that some further aspects were studied ([1,2,8,10]). In [3], P. J. Allen, H. S. Kim and J. Neggers developed a theory of companion d-algebras in sufficient detail to demonstrate considerable parallelism with the theory of $B C K$ algebras as well as obtaining a collection of results of a novel type.

In this paper, we show that any $B C K$-ideal of a d-algebra can be decomposed into the union of some sets. We also introduce the notion of a complicated d-algebra and investigate some related properties.

2. Preliminaries

A d-algebra ([9]) is a non-empty set X with a constant 0 and a binary operation "*" satisfying axioms :
(I) $x * x=0$,
(II) $0 * x=0$,
(III) $x * y=0$ and $y * x=0$ imply $x=y$ for all $x, y \in X$.

A $B C K$-algebra is a d-algebra $(X ; *, 0)$ satisfying additional axioms: (IV) $((x * y) *(x * z)) *(z * y)=0$,
(V) $(x *(x * y)) * y=0$, for all $x, y, z \in X$.

For brevity we also call X a d-algebra. In X we can define a binary relation " \leq " by $x \leq y$ if and only if $x * y=0$.

Definition 2.1. ([9]) Let X be a d-algebra and $x \in X$. Define $x * X:=\{x * a \mid a \in X\} . \quad X$ is said to be edge if for any $x \in X$, $x * X=\{x, 0\}$.

Lemma 2.2. ([9]) Let X be an edge d-algebra. Then
(i) $x * 0=x$ for any $x \in X$,
(ii) the condition (V) holds.

Definition 2.2. ([10]) Let X be a d-algebra and let $\emptyset \neq I \subseteq X . I$ is called a d-subalgebra of X if $x * y \in I$ whenever $x \in I$ and $y \in I . I$ is called a $B C K$-ideal of X if it satisfies:
$\left(D_{0}\right) 0 \in I$,
$\left(D_{1}\right) x * y \in I$ and $y \in I$ imply $x \in I$.
I is called a d-ideal of X if it satisfies $\left(D_{1}\right)$ and
$\left(D_{2}\right) x \in I$ and $y \in X$ imply $x * y \in I$, i.e., $I * X \subseteq I$.
A d-algebra X is called a d^{*}-algebra if it satisfies the identity $(x * y) *$ $x=0$ for all $x, y \in X$. A $B C K$-algebra is a d^{*}-algebra but the converse need not be true(See [9]).

Definition 2.3. ([9]) A d-algebra X is said to be d-transitive if $x * z=0$ and $z * y=0$, then $x * y=0$.

Definition 2.4. ([2]) A d-algebra X is said to be positive implicative if for all $x, y, z \in X,(x * y) * z=(x * z) *(y * z)$.
If X is a positive implicative d-algebra, then it is d-transitive, since " $\leq "$ is transitive, i.e., $x \leq y$ and $y \leq z$ imply $x \leq z$ for any $x, y, z \in X$.

Definition 2.5. ([2]) A d-algebra X is said to be commutative if for all $x, y \in X, x *(x * y)=y *(y * x)$. We denote $x \wedge y:=y *(y * x)$.

3. Main Results

For any d-algebra X and $x, y \in X$, we denote

$$
A(x, y):=\{z \in X \mid(z * x) * y=0\}
$$

Theorem 3.1. If I is a $B C K$-ideal of a d-algebra X, then $I=$ $\cup_{x, y \in I} A(x, y)$.

Proof. Let I be a $B C K$-ideal of a d-algebra X. If $z \in I$, then $(z * z) * 0=0 * 0=0$. Hence $z \in A(z, 0)$. It follows that

$$
I \subseteq \cup_{z \in I} A(z, 0) \subseteq \cup_{x, y \in I} A(x, y)
$$

Let $z \in \cup_{x, y \in I} A(x, y)$. Then there exist $a, b \in I$ such that $z \in A(a, b)$, so that $(z * a) * b=0 \in I$. Since I is a $B C K$-ideal of X, we have $z \in I$. Thus $\cup_{x, y \in I} A(x, y) \subseteq I$, and consequently $I=\cup_{x, y \in I} A(x, y)$.

Corollary 3.2. If I is a $B C K$-ideal of a d-algebra X, then $I=$ $\cup_{x \in I} A(x, 0)$.

Proof. By Theorem 3.1, we have

$$
\cup_{x \in I} A(x, 0) \subseteq \cup_{x, y \in I} A(x, y)=I
$$

If $x \in I$, then $x \in A(x, 0)$ since $(x * x) * 0=0 * 0=0$. Hence $I \subseteq$ $\cup_{x \in I} A(x, 0)$. This competes the proof.

We give an example satisfying Theorem 3.1 and Corollary 3.2. See the following example.

Example 3.3. (1) Let $X:=\{0, a, b, c\}$ be a d-algebra ([2]) which is not a $B C K$-algebra with the following Cayley table:

$*$	0	a	b	c
0	0	0	0	0
a	a	0	0	a
b	c	b	0	c
c	c	b	b	0

Then $I:=\{0, a\}$ is a $B C K$-ideal of X. Moreover, it is easy to check that $I=A(0, a)=A(a, 0)=A(a, a)$.
(2) Let $X:=\{0, a, b, c\}$ be a d-algebra ([10]) which is not a $B C K$-algebra with the Cayley table as follows:

$*$	0	a	b	c
0	0	0	0	0
a	a	0	0	b
b	b	b	0	0
c	c	c	c	0

Then $J:=\{0, a\}$ is a $B C K$-ideal of X. Moreover, it is easy to check that $J=A(0, a)=A(a, 0)=A(a, a)$.

Theorem 3.4. Let I be a non-empty subset of a d-algebra X such that $0 \in I$ and $I=\cup_{x, y \in I} A(x, y)$. Then I is a BCK-ideal of X.

Proof. Let $a * b, b \in I=\cup_{x, y \in I} A(x, y)$. Since $(a * b) *(a * b)=0$, we have $a \in A(b, a * b)$. Hence I is a $B C K$-ideal of X.

Combining Theorems 3.1 and 3.4, we have the following corollary.
Corollary 3.5. Let X be a d-algebra. Then I is a $B C K$-ideal of X if and only if $I=\cup_{x, y \in I} A(x, y)$.

Definition 3.6. Let X be a d^{*}-algebra. $A(x, y):=\{z \in X \mid(z * x) * y=$ $0\}$ for any $x, y \in X . X$ is said to be complicated if for any $x, y \in X$, the set $A(x, y)$ has the greatest element.

Note that $A(x, y)$ is a non-empty set, since $0, x, y \in A(x, y)$, where X is a d^{*}-algebra. The greatest element of $A(x, y)$ is denoted by $x+y$.

Example 3.7. Let $X:=\{0,1,2,3\}$ be a set with the following table:

$$
\begin{array}{c|cccc}
* & 0 & 1 & 2 & 3 \\
\hline 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
2 & 2 & 2 & 0 & 0 \\
3 & 1 & 2 & 1 & 0
\end{array}
$$

Then X is a complicated d^{*}-algebra which is not a $B C K$-algebra, since $(3 *(3 * 0)) * 0=(3 * 1) * 0=2 * 0=2 \neq 0$. But it is neither positive implicative nor commutative.

Example 3.8. (1) Let $X:=\{0,1,2,3,4\}$ be a d-algebra ([2]) which is not a $B C K$-algebra with the following table:

$*$	0	1	2	3	4
0	0	0	0	0	0
1	1	0	3	2	1
2	2	4	0	2	1
3	3	4	3	0	1
4	4	4	3	2	0

Then X is not complicated, because $A(2,3)=\{z \in X \mid(z * 2) * 3=0\}=$ $\{0,1,2,3,4\}$ has no greatest element. Moreover, it is neither positive implicative nor commutative.
(2) Let $X:=\{0, a, b, c\}$ be a set with the following table:

$*$	0	a	b	c
0	0	0	0	0
a	a	0	0	a
b	b	b	0	b
c	c	c	c	0

Then X is a positive implicative d-algebra. But it is not complicated, because $A(a, c)=\{0, a, c\}$ has no greatest element.

Lemma 3.9. Let X be a positive implicative d-algebra. If $x \leq y$, then $x * z \leq y * z$ for any $x, y, z \in X$.

Proof. Let $x, y \in X$ with $x \leq y$. Then $x * y=0$. Since X is positive implicative, we have $(x * z) *(y * z)=(x * y) * z=0 * z=0$. Hence $x * z \leq y * z$. This completes the proof.

Proposition 3.10. Let X be a complicated d^{*}-algebra. Then for any $x, y, z \in X$, the following hold:
(i) $x \leq x+y, y \leq x+y$,
(ii) if X is an edge d^{*}-algebra, then $x+0=x=0+x$.

Proof. (i) and (ii) are straightforward.
Theorem 3.11. Let X be a positive implicative complicated d^{*} algebra and let $a, b \in X$. Then the set

$$
\mathcal{H}(a, b):=\{x \in X \mid a \leq b+x\}
$$

has the least element, and it is $a * b$.
Proof. The inequality $a * b \leq a * b$ implies that $a \leq b+(a * b)$ and so $a * b \in \mathcal{H}(a, b)$. Let $z \in \mathcal{H}(a, b)$. Then $a \leq b+z$, which implies from Lemma 3.9 and Definition 3.6 that $a * b \leq(b+z) * b \leq z$. Since X is d-transitive, we have $a * b \leq z$. Thus $a * b$ is the least element of $\mathcal{H}(a, b)$.

We provide some characterizations of ideals in a complicated d^{*} algebra.

Proposition 3.12. Let A be a non-empty subset of a complicated d^{*}-algebra X. If A is a $B C K$-ideal of X, then it satisfies the following conditions:
(i) $(\forall x \in A)(\forall y \in X)(y \leq x \Longrightarrow y \in A)$.
(ii) $(\forall x, y \in A)(\exists z \in A)(x \leq z, y \leq z)$.

Proof. Assume that A is a $B C K$-ideal of X. Let $x \in A, y \in X$ with $y \leq x$. Then $y * x=0$. From the definition of $B C K$-ideal of X, we have $y \in A$. (i) is valid.

Let $x, y \in A$. Since $(x+y) * x \leq y$ and $y \in A$, it follows from (i) that $(x+y) * x \in A$ so that $x+y \in A$ because A is a $B C K$-ideal of X. If we take $z:=x+y$, then $x \leq z$ and $y \leq z$ by Proposition 3.10 (i). This completes the proof.

In Proposition 3.12, the condition, "complicated", is very necessary. See the following example.

Example 3.13. Let $X:=\{0,1,2,3,4\}$ be a set with the following Cayley table:

$*$	0	1	2	3	4
0	0	0	0	0	0
1	1	0	1	0	0
2	2	2	0	2	0
3	3	4	3	0	0
4	3	4	3	2	0

It is easy to show that X is a d^{*}-algebra which is not a $B C K$-algebra because $4 * 0=3$. Moreover, X is not complicated, since $A(4,3)=\{z \in$ $X \mid(z * 4) * 3=0\}=\{0,1,2,3,4\}$ has no greatest element. It is easy to see that $\{0,1,2\}$ is a $B C K$-ideal of X, but there is no element $z \in A$ such that $x \leq z, y \leq z$, proving that the condition, "complicated", is necessary in Proposition 3.12. .

Theorem 3.14. Let A be a non-empty subset of a positive implicative complicated d^{*}-algebra X. Then A is a $B C K$-ideal of X if and only if it satisfies the following conditions:
(i) $(\forall x \in A)(\forall y \in X)(y \leq x \Longrightarrow y \in A)$.
(ii) $(\forall x, y \in A)(x, y \in A \Longrightarrow x+y \in A)$.

Proof. The necessity follows immediately from Propositions 3.10 and 3.12 .

Conversely, let A be a non-empty subset of X satisfying conditions (i) and (ii). Obviously $0 \in A$ by (i) and (II). Let $x, y \in X$ satisfying $y \in A$ and $x * y \in A$. Then $y+(x * y) \in A$ by (ii). Since $x \leq y+(x * y)$ by Theorem 3.11, it follows from (i) that $x \in A$. Thus A is a $B C K$-ideal of X.

References

[1] S. S. Ahn and Y. H. Kim, Some constructions of implicative/commutative d algebras, Bull. Korean Math. Soc. 46 (2009), 147-153.
[2] S. S. Ahn and K. S. So, On kernels and annihilators of left-regular mappings in d-algebras, Honam Math. J. 30 (2008), 645-658.
[3] P. J. Allen, H. S. Kim, and J. Neggers, Companion d-algebras, Math. Slovaca 57 (2007), 93-106.
[4] K. Iséki, On BCI-algebras, Mathematics Seminar Notes 8 (1980), 125-130.
[5] K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japonica 23(1) (1978), 1-26.
[6] Y. B. Jun, Y. H. Kim and K. A. Oh, Substraction algebras with additional conditions, Commun. Korean Math. Soc. 22(2007), 1-7.
[7] Y. C. Lee and H. S. Kim, On d^{*}-subalgebras of d-transitive d^{*}-algebrads, Math. Slovaca 49 (1999), 27-33.
[8] J. Neggers, A. Dvurećenskij and H. S. Kim, On d-fuzzy functions in d-algebras, Found. Phys. 30 (2000), 1807-1816.
[9] J. Neggers and H. S. Kim, On d-algebras, Math. Slovaca 49, (1999), 19-26.
[10] J. Neggers, Y. B. Jun and H. S. Kim, On d-ideals in d-algebras, Math. Slovaca 49 (1999), 243-251.

Sun Shin Ahn

Department of Mathematics Education
Dongguk University, Seoul 100-715, Korea
e-mail: sunshine@dongguk.edu
Gyeong Ho Han
Department of Mathematics Education
Dongguk University, Seoul 100-715, Korea
e-mail: pranchisco1@naver.com

