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d-ALGEBRAS WITH COMPLICATED CONDITION

Sun Shin Ahn and Gyeong Ho Han

Abstract. Any BCK-ideal of a d-algebra can be decomposed into
the union of some sets. The notion of a complicated d-algebra is
introduced and some related properties are obtained.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras:
BCK-algebras and BCI-algebras ([4,5]). It is known that the class of
BCK-algebras is a proper subclass of the class of BCI-algebras. J.
Neggers and H. S. Kim ([9]) introduced the notion of d-algebras which
is another useful generalization of BCK-algebras, and investigated sev-
eral relations between d-algebras and BCK-algebras. After that some
further aspects were studied([1,2,8,10]). In [3], P. J. Allen, H. S. Kim
and J. Neggers developed a theory of companion d-algebras in sufficient
detail to demonstrate considerable parallelism with the theory of BCK-
algebras as well as obtaining a collection of results of a novel type.

In this paper, we show that any BCK-ideal of a d-algebra can be
decomposed into the union of some sets. We also introduce the notion
of a complicated d-algebra and investigate some related properties.

2. Preliminaries

A d-algebra ([9]) is a non-empty set X with a constant 0 and a binary
operation “ ∗ ” satisfying axioms :

(I) x ∗ x = 0,
(II) 0 ∗ x = 0,

(III) x ∗ y = 0 and y ∗ x = 0 imply x = y for all x, y ∈ X.

A BCK-algebra is a d-algebra (X; ∗, 0) satisfying additional axioms:
(IV) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,
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(V) (x ∗ (x ∗ y)) ∗ y = 0, for all x, y, z ∈ X.

For brevity we also call X a d-algebra. In X we can define a binary
relation “ ≤ ” by x ≤ y if and only if x ∗ y = 0.

Definition 2.1. ([9]) Let X be a d-algebra and x ∈ X. Define
x ∗ X := {x ∗ a|a ∈ X}. X is said to be edge if for any x ∈ X,
x ∗X = {x, 0}.

Lemma 2.2. ([9]) Let X be an edge d-algebra. Then

(i) x ∗ 0 = x for any x ∈ X,
(ii) the condition (V) holds.

Definition 2.2. ([10]) Let X be a d-algebra and let ∅ 6= I ⊆ X. I is
called a d-subalgebra of X if x ∗ y ∈ I whenever x ∈ I and y ∈ I. I is
called a BCK-ideal of X if it satisfies:
(D0) 0 ∈ I,
(D1) x ∗ y ∈ I and y ∈ I imply x ∈ I.
I is called a d-ideal of X if it satisfies (D1) and
(D2) x ∈ I and y ∈ X imply x ∗ y ∈ I, i.e., I ∗X ⊆ I.

A d-algebra X is called a d∗-algebra if it satisfies the identity (x∗y)∗
x = 0 for all x, y ∈ X. A BCK-algebra is a d∗-algebra but the converse
need not be true(See [9]).

Definition 2.3. ([9]) A d-algebra X is said to be d-transitive if
x ∗ z = 0 and z ∗ y = 0, then x ∗ y = 0.

Definition 2.4. ([2]) A d-algebra X is said to be positive implicative
if for all x, y, z ∈ X, (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z).

If X is a positive implicative d-algebra, then it is d-transitive, since “ ≤ ”
is transitive, i.e., x ≤ y and y ≤ z imply x ≤ z for any x, y, z ∈ X.

Definition 2.5. ([2]) A d-algebra X is said to be commutative if for
all x, y ∈ X, x ∗ (x ∗ y) = y ∗ (y ∗ x). We denote x ∧ y := y ∗ (y ∗ x).

3. Main Results

For any d-algebra X and x, y ∈ X, we denote

A(x, y) := {z ∈ X|(z ∗ x) ∗ y = 0}.

Theorem 3.1. If I is a BCK-ideal of a d-algebra X, then I =
∪x,y∈IA(x, y).
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Proof. Let I be a BCK-ideal of a d-algebra X. If z ∈ I, then
(z ∗ z) ∗ 0 = 0 ∗ 0 = 0. Hence z ∈ A(z, 0). It follows that

I ⊆ ∪z∈IA(z, 0) ⊆ ∪x,y∈IA(x, y).

Let z ∈ ∪x,y∈IA(x, y). Then there exist a, b ∈ I such that z ∈ A(a, b),
so that (z ∗ a) ∗ b = 0 ∈ I. Since I is a BCK-ideal of X, we have z ∈ I.
Thus ∪x,y∈IA(x, y) ⊆ I, and consequently I = ∪x,y∈IA(x, y).

Corollary 3.2. If I is a BCK-ideal of a d-algebra X, then I =
∪x∈IA(x, 0).

Proof. By Theorem 3.1, we have

∪x∈IA(x, 0) ⊆ ∪x,y∈IA(x, y) = I.

If x ∈ I, then x ∈ A(x, 0) since (x ∗ x) ∗ 0 = 0 ∗ 0 = 0. Hence I ⊆
∪x∈IA(x, 0). This competes the proof.

We give an example satisfying Theorem 3.1 and Corollary 3.2. See
the following example.

Example 3.3. (1) Let X := {0, a, b, c} be a d-algebra ([2]) which is
not a BCK-algebra with the following Cayley table:

∗ 0 a b c
0 0 0 0 0
a a 0 0 a
b c b 0 c
c c b b 0

Then I := {0, a} is a BCK-ideal of X. Moreover, it is easy to check
that I = A(0, a) = A(a, 0) = A(a, a).
(2) Let X := {0, a, b, c} be a d-algebra ([10]) which is not a BCK-algebra
with the Cayley table as follows:

∗ 0 a b c
0 0 0 0 0
a a 0 0 b
b b b 0 0
c c c c 0

Then J := {0, a} is a BCK-ideal of X. Moreover, it is easy to check
that J = A(0, a) = A(a, 0) = A(a, a).

Theorem 3.4. Let I be a non-empty subset of a d-algebra X such
that 0 ∈ I and I = ∪x,y∈IA(x, y). Then I is a BCK-ideal of X.
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Proof. Let a ∗ b, b ∈ I = ∪x,y∈IA(x, y). Since (a ∗ b) ∗ (a ∗ b) = 0, we
have a ∈ A(b, a ∗ b). Hence I is a BCK-ideal of X.

Combining Theorems 3.1 and 3.4, we have the following corollary.

Corollary 3.5. Let X be a d-algebra. Then I is a BCK-ideal of X
if and only if I = ∪x,y∈IA(x, y).

Definition 3.6. Let X be a d∗-algebra. A(x, y) := {z ∈ X|(z∗x)∗y =
0} for any x, y ∈ X. X is said to be complicated if for any x, y ∈ X, the
set A(x, y) has the greatest element.

Note that A(x, y) is a non-empty set, since 0, x, y ∈ A(x, y), where X
is a d∗-algebra. The greatest element of A(x, y) is denoted by x + y.

Example 3.7. Let X := {0, 1, 2, 3} be a set with the following table:

∗ 0 1 2 3
0 0 0 0 0
1 1 0 0 0
2 2 2 0 0
3 1 2 1 0

Then X is a complicated d∗-algebra which is not a BCK-algebra, since
(3 ∗ (3 ∗ 0)) ∗ 0 = (3 ∗ 1) ∗ 0 = 2 ∗ 0 = 2 6= 0. But it is neither positive
implicative nor commutative.

Example 3.8. (1) Let X := {0, 1, 2, 3, 4} be a d-algebra ([2]) which
is not a BCK-algebra with the following table:

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 3 2 1
2 2 4 0 2 1
3 3 4 3 0 1
4 4 4 3 2 0

Then X is not complicated, because A(2, 3) = {z ∈ X|(z ∗ 2) ∗ 3 = 0} =
{0, 1, 2, 3, 4} has no greatest element. Moreover, it is neither positive
implicative nor commutative.
(2) Let X := {0, a, b, c} be a set with the following table:

∗ 0 a b c
0 0 0 0 0
a a 0 0 a
b b b 0 b
c c c c 0
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Then X is a positive implicative d-algebra. But it is not complicated,
because A(a, c) = {0, a, c} has no greatest element.

Lemma 3.9. Let X be a positive implicative d-algebra. If x ≤ y,
then x ∗ z ≤ y ∗ z for any x, y, z ∈ X.

Proof. Let x, y ∈ X with x ≤ y. Then x ∗ y = 0. Since X is positive
implicative, we have (x ∗ z) ∗ (y ∗ z) = (x ∗ y) ∗ z = 0 ∗ z = 0. Hence
x ∗ z ≤ y ∗ z. This completes the proof.

Proposition 3.10. Let X be a complicated d∗-algebra. Then for
any x, y, z ∈ X, the following hold:

(i) x ≤ x + y, y ≤ x + y,
(ii) if X is an edge d∗-algebra, then x + 0 = x = 0 + x.

Proof. (i) and (ii) are straightforward.

Theorem 3.11. Let X be a positive implicative complicated d∗-
algebra and let a, b ∈ X. Then the set

H(a, b) := {x ∈ X|a ≤ b + x}
has the least element, and it is a ∗ b.

Proof. The inequality a ∗ b ≤ a ∗ b implies that a ≤ b + (a ∗ b) and
so a ∗ b ∈ H(a, b). Let z ∈ H(a, b). Then a ≤ b + z, which implies
from Lemma 3.9 and Definition 3.6 that a ∗ b ≤ (b + z) ∗ b ≤ z. Since
X is d-transitive, we have a ∗ b ≤ z. Thus a ∗ b is the least element of
H(a, b).

We provide some characterizations of ideals in a complicated d∗-
algebra.

Proposition 3.12. Let A be a non-empty subset of a complicated
d∗-algebra X. If A is a BCK-ideal of X, then it satisfies the following
conditions:

(i) (∀x ∈ A)(∀y ∈ X)(y ≤ x =⇒ y ∈ A).
(ii) (∀x, y ∈ A)(∃z ∈ A) (x ≤ z, y ≤ z).

Proof. Assume that A is a BCK-ideal of X. Let x ∈ A, y ∈ X with
y ≤ x. Then y ∗x = 0. From the definition of BCK-ideal of X, we have
y ∈ A. (i) is valid.

Let x, y ∈ A. Since (x + y) ∗x ≤ y and y ∈ A, it follows from (i) that
(x + y) ∗ x ∈ A so that x + y ∈ A because A is a BCK-ideal of X. If
we take z := x + y, then x ≤ z and y ≤ z by Proposition 3.10 (i). This
completes the proof.
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In Proposition 3.12, the condition, “complicated”, is very necessary.
See the following example.

Example 3.13. Let X := {0, 1, 2, 3, 4} be a set with the following
Cayley table:

∗ 0 1 2 3 4
0 0 0 0 0 0
1 1 0 1 0 0
2 2 2 0 2 0
3 3 4 3 0 0
4 3 4 3 2 0

It is easy to show that X is a d∗-algebra which is not a BCK-algebra
because 4 ∗ 0 = 3. Moreover, X is not complicated, since A(4, 3) = {z ∈
X|(z ∗ 4) ∗ 3 = 0} = {0, 1, 2, 3, 4} has no greatest element. It is easy to
see that {0, 1, 2} is a BCK-ideal of X, but there is no element z ∈ A
such that x ≤ z, y ≤ z, proving that the condition, “complicated”, is
necessary in Proposition 3.12. .

Theorem 3.14. Let A be a non-empty subset of a positive implica-
tive complicated d∗-algebra X. Then A is a BCK-ideal of X if and only
if it satisfies the following conditions:

(i) (∀x ∈ A)(∀y ∈ X)(y ≤ x =⇒ y ∈ A).
(ii) (∀x, y ∈ A)(x, y ∈ A =⇒ x + y ∈ A).

Proof. The necessity follows immediately from Propositions 3.10 and
3.12.

Conversely, let A be a non-empty subset of X satisfying conditions
(i) and (ii). Obviously 0 ∈ A by (i) and (II). Let x, y ∈ X satisfying
y ∈ A and x ∗ y ∈ A. Then y + (x ∗ y) ∈ A by (ii). Since x ≤ y + (x ∗ y)
by Theorem 3.11, it follows from (i) that x ∈ A. Thus A is a BCK-ideal
of X.
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