Honam Mathematical J. 31 (2009), No. 4, pp. 489-495

d-ALGEBRAS WITH COMPLICATED CONDITION

SUN SHIN AHN AND GYEONG HO HAN

Abstract. Any BCK-ideal of a *d*-algebra can be decomposed into the union of some sets. The notion of a complicated *d*-algebra is introduced and some related properties are obtained.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-algebras and BCI-algebras ([4,5]). It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. J. Neggers and H. S. Kim ([9]) introduced the notion of d-algebras which is another useful generalization of BCK-algebras, and investigated several relations between d-algebras and BCK-algebras. After that some further aspects were studied([1,2,8,10]). In [3], P. J. Allen, H. S. Kim and J. Neggers developed a theory of companion d-algebras in sufficient detail to demonstrate considerable parallelism with the theory of BCKalgebras as well as obtaining a collection of results of a novel type.

In this paper, we show that any BCK-ideal of a *d*-algebra can be decomposed into the union of some sets. We also introduce the notion of a complicated *d*-algebra and investigate some related properties.

2. Preliminaries

A *d*-algebra ([9]) is a non-empty set X with a constant 0 and a binary operation "*" satisfying axioms :

- (I) x * x = 0,
- (II) 0 * x = 0,
- (III) x * y = 0 and y * x = 0 imply x = y for all $x, y \in X$.

A *BCK*-algebra is a *d*-algebra (X; *, 0) satisfying additional axioms: (IV) ((x * y) * (x * z)) * (z * y) = 0,

Received October 14, 2009. Accepted November 18, 2009. 2000 Mathematics Subject Classification. 06F35, 03G25. Key words and phrases. *d*-algebras, complicated *d*-algebras.

(V) (x * (x * y)) * y = 0, for all $x, y, z \in X$.

For brevity we also call X a *d*-algebra. In X we can define a binary relation " \leq " by $x \leq y$ if and only if x * y = 0.

Definition 2.1. ([9]) Let X be a d-algebra and $x \in X$. Define $x * X := \{x * a | a \in X\}$. X is said to be *edge* if for any $x \in X$, $x * X = \{x, 0\}$.

Lemma 2.2. ([9]) Let X be an edge d-algebra. Then

(i) x * 0 = x for any $x \in X$,

(ii) the condition (V) holds.

Definition 2.2. ([10]) Let X be a d-algebra and let $\emptyset \neq I \subseteq X$. I is called a d-subalgebra of X if $x * y \in I$ whenever $x \in I$ and $y \in I$. I is called a *BCK-ideal* of X if it satisfies:

 $(D_0) \ 0 \in I,$

 $(D_1) x * y \in I \text{ and } y \in I \text{ imply } x \in I.$

I is called a *d*-ideal of X if it satisfies (D_1) and

 (D_2) $x \in I$ and $y \in X$ imply $x * y \in I$, i.e., $I * X \subseteq I$.

A *d*-algebra X is called a d^* -algebra if it satisfies the identity (x * y) * x = 0 for all $x, y \in X$. A *BCK*-algebra is a d^* -algebra but the converse need not be true(See [9]).

Definition 2.3. ([9]) A *d*-algebra X is said to be *d*-transitive if x * z = 0 and z * y = 0, then x * y = 0.

Definition 2.4. ([2]) A *d*-algebra X is said to be *positive implicative* if for all $x, y, z \in X$, (x * y) * z = (x * z) * (y * z).

If X is a positive implicative d-algebra, then it is d-transitive, since " \leq " is transitive, i.e., $x \leq y$ and $y \leq z$ imply $x \leq z$ for any $x, y, z \in X$.

Definition 2.5. ([2]) A *d*-algebra X is said to be *commutative* if for all $x, y \in X$, x * (x * y) = y * (y * x). We denote $x \wedge y := y * (y * x)$.

3. Main Results

For any *d*-algebra X and $x, y \in X$, we denote

$$A(x, y) := \{ z \in X | (z * x) * y = 0 \}.$$

Theorem 3.1. If I is a BCK-ideal of a d-algebra X, then $I = \bigcup_{x,y \in I} A(x,y)$.

490

Proof. Let I be a BCK-ideal of a d-algebra X. If $z \in I$, then (z * z) * 0 = 0 * 0 = 0. Hence $z \in A(z, 0)$. It follows that

$$I \subseteq \bigcup_{z \in I} A(z, 0) \subseteq \bigcup_{x, y \in I} A(x, y).$$

Let $z \in \bigcup_{x,y \in I} A(x,y)$. Then there exist $a, b \in I$ such that $z \in A(a,b)$, so that $(z * a) * b = 0 \in I$. Since I is a *BCK*-ideal of X, we have $z \in I$. Thus $\bigcup_{x,y \in I} A(x,y) \subseteq I$, and consequently $I = \bigcup_{x,y \in I} A(x,y)$. \Box

Corollary 3.2. If I is a BCK-ideal of a d-algebra X, then $I = \bigcup_{x \in I} A(x, 0)$.

Proof. By Theorem 3.1, we have

$$\bigcup_{x \in I} A(x, 0) \subseteq \bigcup_{x, y \in I} A(x, y) = I.$$

If $x \in I$, then $x \in A(x,0)$ since (x * x) * 0 = 0 * 0 = 0. Hence $I \subseteq \bigcup_{x \in I} A(x,0)$. This competes the proof. \Box

We give an example satisfying Theorem 3.1 and Corollary 3.2. See the following example.

Example 3.3. (1) Let $X := \{0, a, b, c\}$ be a *d*-algebra ([2]) which is not a *BCK*-algebra with the following Cayley table:

Then $I := \{0, a\}$ is a *BCK*-ideal of *X*. Moreover, it is easy to check that I = A(0, a) = A(a, 0) = A(a, a).

(2) Let $X := \{0, a, b, c\}$ be a *d*-algebra ([10]) which is not a *BCK*-algebra with the Cayley table as follows:

Then $J := \{0, a\}$ is a *BCK*-ideal of *X*. Moreover, it is easy to check that J = A(0, a) = A(a, 0) = A(a, a).

Theorem 3.4. Let I be a non-empty subset of a d-algebra X such that $0 \in I$ and $I = \bigcup_{x,y \in I} A(x,y)$. Then I is a BCK-ideal of X.

Proof. Let $a * b, b \in I = \bigcup_{x,y \in I} A(x,y)$. Since (a * b) * (a * b) = 0, we have $a \in A(b, a * b)$. Hence I is a BCK-ideal of X. \Box

Combining Theorems 3.1 and 3.4, we have the following corollary.

Corollary 3.5. Let X be a d-algebra. Then I is a BCK-ideal of X if and only if $I = \bigcup_{x,y \in I} A(x,y)$.

Definition 3.6. Let X be a d^* -algebra. $A(x, y) := \{z \in X | (z*x)*y = 0\}$ for any $x, y \in X$. X is said to be *complicated* if for any $x, y \in X$, the set A(x, y) has the greatest element.

Note that A(x, y) is a non-empty set, since $0, x, y \in A(x, y)$, where X is a d^* -algebra. The greatest element of A(x, y) is denoted by x + y.

Example 3.7. Let $X := \{0, 1, 2, 3\}$ be a set with the following table:

*		1		3
0	0	0	0	0
1	1	0	0	0
2	2	2	0	0
3	$egin{array}{c} 0 \\ 1 \\ 2 \\ 1 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 2 \\ 2 \end{array}$	1	0

Then X is a complicated d^* -algebra which is not a *BCK*-algebra, since $(3 * (3 * 0)) * 0 = (3 * 1) * 0 = 2 * 0 = 2 \neq 0$. But it is neither positive implicative nor commutative.

Example 3.8. (1) Let $X := \{0, 1, 2, 3, 4\}$ be a *d*-algebra ([2]) which is not a *BCK*-algebra with the following table:

*	0	1	2	3	4
0	0	0	0	0	0
1	$ \begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \end{array} $	0	3	2	1
2	2	4	0	2	1
3	3	4	3	0	1
4	4	4	3	2	0

Then X is not complicated, because $A(2,3) = \{z \in X | (z*2)*3 = 0\} = \{0,1,2,3,4\}$ has no greatest element. Moreover, it is neither positive implicative nor commutative.

(2) Let $X := \{0, a, b, c\}$ be a set with the following table:

*	0	a	b	c
0		0	0	0
a	a	0	0	a
b	b	b	0	b
c	c	c	c	0

492

Then X is a positive implicative d-algebra. But it is not complicated, because $A(a,c) = \{0, a, c\}$ has no greatest element.

Lemma 3.9. Let X be a positive implicative d-algebra. If $x \leq y$, then $x * z \leq y * z$ for any $x, y, z \in X$.

Proof. Let $x, y \in X$ with $x \leq y$. Then x * y = 0. Since X is positive implicative, we have (x * z) * (y * z) = (x * y) * z = 0 * z = 0. Hence $x * z \leq y * z$. This completes the proof.

Proposition 3.10. Let X be a complicated d^* -algebra. Then for any $x, y, z \in X$, the following hold:

- (i) $x \le x + y, y \le x + y$,
- (ii) if X is an edge d^* -algebra, then x + 0 = x = 0 + x.

Proof. (i) and (ii) are straightforward.

Theorem 3.11. Let X be a positive implicative complicated d^* -algebra and let $a, b \in X$. Then the set

$$\mathcal{H}(a,b) := \{ x \in X | a \le b + x \}$$

has the least element, and it is a * b.

Proof. The inequality $a * b \le a * b$ implies that $a \le b + (a * b)$ and so $a * b \in \mathcal{H}(a, b)$. Let $z \in \mathcal{H}(a, b)$. Then $a \le b + z$, which implies from Lemma 3.9 and Definition 3.6 that $a * b \le (b + z) * b \le z$. Since X is d-transitive, we have $a * b \le z$. Thus a * b is the least element of $\mathcal{H}(a, b)$.

We provide some characterizations of ideals in a complicated d^* -algebra.

Proposition 3.12. Let A be a non-empty subset of a complicated d^* -algebra X. If A is a BCK-ideal of X, then it satisfies the following conditions:

- (i) $(\forall x \in A)(\forall y \in X)(y \le x \implies y \in A).$
- (ii) $(\forall x, y \in A)(\exists z \in A) \ (x \le z, y \le z).$

Proof. Assume that A is a *BCK*-ideal of X. Let $x \in A, y \in X$ with $y \leq x$. Then y * x = 0. From the definition of *BCK*-ideal of X, we have $y \in A$. (i) is valid.

Let $x, y \in A$. Since $(x + y) * x \leq y$ and $y \in A$, it follows from (i) that $(x + y) * x \in A$ so that $x + y \in A$ because A is a *BCK*-ideal of X. If we take z := x + y, then $x \leq z$ and $y \leq z$ by Proposition 3.10 (i). This completes the proof.

Sun Shin Ahn and Gyeong Ho Han

In Proposition 3.12, the condition, "complicated", is very necessary. See the following example.

Example 3.13. Let $X := \{0, 1, 2, 3, 4\}$ be a set with the following Cayley table:

*	0	1	2	3	4
0	0	$\begin{array}{c} 1\\ 0\\ 0\\ 2\\ 4\\ 4\\ 4\end{array}$	0	0	0
1	1	0	1	0	0
2	2	2	0	2	0
3	3	4	3	0	0
4	3	4	3	2	0

It is easy to show that X is a d^* -algebra which is not a BCK-algebra because 4 * 0 = 3. Moreover, X is not complicated, since $A(4,3) = \{z \in X | (z * 4) * 3 = 0\} = \{0, 1, 2, 3, 4\}$ has no greatest element. It is easy to see that $\{0, 1, 2\}$ is a BCK-ideal of X, but there is no element $z \in A$ such that $x \leq z, y \leq z$, proving that the condition, "complicated", is necessary in Proposition 3.12.

Theorem 3.14. Let A be a non-empty subset of a positive implicative complicated d^* -algebra X. Then A is a BCK-ideal of X if and only if it satisfies the following conditions:

- (i) $(\forall x \in A)(\forall y \in X)(y \le x \implies y \in A).$
- (ii) $(\forall x, y \in A)(x, y \in A \implies x + y \in A).$

Proof. The necessity follows immediately from Propositions 3.10 and 3.12.

Conversely, let A be a non-empty subset of X satisfying conditions (i) and (ii). Obviously $0 \in A$ by (i) and (II). Let $x, y \in X$ satisfying $y \in A$ and $x * y \in A$. Then $y + (x * y) \in A$ by (ii). Since $x \leq y + (x * y)$ by Theorem 3.11, it follows from (i) that $x \in A$. Thus A is a BCK-ideal of X.

References

- S. S. Ahn and Y. H. Kim, Some constructions of implicative/commutative dalgebras, Bull. Korean Math. Soc. 46 (2009), 147-153.
- [2] S. S. Ahn and K. S. So, On kernels and annihilators of left-regular mappings in d-algebras, Honam Math. J. 30 (2008), 645-658.
- [3] P. J. Allen, H. S. Kim, and J. Neggers, Companion d-algebras, Math. Slovaca 57 (2007), 93-106.
- [4] K. Iséki, On BCI-algebras, Mathematics Seminar Notes 8 (1980), 125-130.

494

- [5] K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japonica 23(1) (1978), 1-26.
- [6] Y. B. Jun, Y. H. Kim and K. A. Oh, Substraction algebras with additional conditions, Commun. Korean Math. Soc. 22(2007), 1-7.
- [7] Y. C. Lee and H. S. Kim, On d^{*}-subalgebras of d-transitive d^{*}-algebrads, Math. Slovaca 49 (1999), 27-33.
- [8] J. Neggers, A. Dvurećenskij and H. S. Kim, On d-fuzzy functions in d-algebras, Found. Phys. 30 (2000), 1807-1816.
- [9] J. Neggers and H. S. Kim, On d-algebras, Math. Slovaca 49, (1999), 19-26.
- [10] J. Neggers, Y. B. Jun and H. S. Kim, On d-ideals in d-algebras, Math. Slovaca 49 (1999), 243-251.

Sun Shin Ahn Department of Mathematics Education Dongguk University, Seoul 100-715, Korea e-mail: sunshine@dongguk.edu

Gyeong Ho Han

Department of Mathematics Education Dongguk University, Seoul 100-715, Korea e-mail: pranchisco1@naver.com