Honam Mathematical J. 31 (2009), No. 4, pp. 497-504

M-PRECLOSED GRAPH AND *M**-PREOPEN MAPPING ON SPACES WITH MINIMAL STRUCTURES

WON KEUN MIN AND YOUNG KEY KIM

Abstract. We introduce the concepts of M-preclosed graph and M^* -preopen mapping on spaces with minimal structures and investigate some properties of M^* -preopen mapping. We also investigate the relationships between M-precontinuous mappings and several types of m-compactness.

1. Introduction

In [3], Popa and Noiri introduced the concept of minimal structure which is a generalization of a topology on a given nonempty set. They introduced the concept of M-continuous [4] mapping as a mapping defined between minimal structures. They showed that the M-continuous mappings have properties similar to those of continuous mappings between topological spaces. We introduced the concepts of m-preopen set and M-precontinuity on spaces with minimal structures in [1]. In this paper, we introduce the concepts of M-preclosed graph and M^* -preopen mapping on spaces with minimal structures and investigate some properties of M^* -preopen mapping. And we investigate the relationships between M-precontinuous mappings and several types of m-compactness. In particular, we show that Theorem 3.16: If $f : (X, m_X) \to (Y, m_Y)$ is an M-precontinuous and M^* -preopen mapping on two spaces with minimal structures m_X and m_Y , and if A is a nearly m-precompact set, then f(A) is nearly m-compact.

Received September 28, 2009. Accepted November 11, 2009.

²⁰⁰⁰ Mathematics Subject Classification: 54C08.

Key words and phrases: m-preopen sets, M-precontinuous, M^* -preopen mapping, nearly m-precompact, nearly m-compact.

Corresponding Author : wkmin@kangwon.ac.kr .

2. Preliminaries

A subfamily m_X of the power set P(X) of a nonempty set X is called a *minimal structure* [3] on X if $\emptyset \in m_X$ and $X \in m_X$. By (X, m_X) , we denote a nonempty set X with a minimal structure m_X on X. Simply we call (X, m_X) a space with a minimal structure m_X on X.

Let (X, m_X) be a space with a minimal structure m_X on X. For a subset A of X, the closure of A and the interior of A [3] are defined as the following:

 $mInt(A) = \bigcup \{U : U \subseteq A, U \in m_X\}.$ $mCl(A) = \cap \{F : A \subseteq F, X - F \in m_X\}.$

Theorem 2.1. ([3]) Let (X, m_X) be a space with a minimal structure m_X on X and $A \subseteq X$.

(1) X = mInt(X) and $\emptyset = mCl(\emptyset)$.

(2) $mInt(A) \subseteq A$ and $A \subseteq mCl(A)$.

(3) If $A \in m_X$, then mInt(A) = A and if $X - F \in m_X$, then mCl(F) = F.

(4) If $A \subseteq B$, then $mInt(A) \subseteq mInt(B)$ and $mCl(A) \subseteq mCl(B)$.

(5) mInt(mInt(A)) = mInt(A) and mCl(mCl(A)) = mCl(A).

(6) mCl(X - A) = X - mInt(A) and mInt(X - A) = X - mCl(A).

Let (X, m_X) be a space with a minimal structure m_X on X and $A \subseteq X$. Then a set A is called an *m*-preopen set [1] in X if

$$A \subseteq mInt(mCl(A)).$$

A set A is called an *m*-preclosed set if the complement of A is *m*-preopen. Any union of *m*-preopen sets is *m*-preopen [1].

The *m*-pre-closure and the *m*-pre-interior of A, denoted by mpCl(A) and mpInt(A), respectively, are defined as the following:

$$mpCl(A) = \cap \{F \subseteq X : A \subseteq F, F \text{ is } m \text{-preclosed in } X\}$$

$$mpInt(A) = \bigcup \{ U \subseteq X : U \subseteq A, U \text{ is } m \text{-preopen in } X \}.$$

Theorem 2.2. ([1]) Let (X, m_X) be a space with a minimal structure m_X and $A \subseteq X$. Then

(1) $mpInt(A) \subseteq A$.

(2) If $A \subseteq B$, then $mpInt(A) \subseteq mpInt(B)$.

(3) A is m-preopen iff mpInt(A) = A.

(4) mpInt(mpInt(A)) = mpInt(A).

(5) mpCl(X - A) = X - mpInt(A) and mpInt(X - A) = X - mpCl(A).

Theorem 2.3. ([1]) Let (X, m_X) be a space with a minimal structure m_X and $A \subset X$. Then

(1) $A \subseteq mpCl(A)$.

(2) If $A \subseteq B$, then $mpCl(A) \subseteq mpCl(B)$.

(3) F is *m*-preclosed iff mpCl(F) = F.

(4) mpCl(mpCl(A)) = mpCl(A).

Let $f: (X, m_X) \to (Y, m_Y)$ be a mapping on spaces (X, m_X) and (Y, m_Y) with minimal structures m_X, m_y . Then f is said to be

(1) *M*-continuous [4] if for $x \in X$ and each *m*-open set *V* containing f(x), there exists an *m*-open set *U* containing *x* such that $f(U) \subseteq V$;

(2) *M*-precontinuous [1] if for each point x and each m-open set V containing f(x), there exists an m-preopen set U containing x such that $f(U) \subseteq V$.

Theorem 2.4. ([1]) Let $f : (X, m_X) \to (Y, m_Y)$ be a mapping on spaces (X, m_X) and (Y, m_Y) with minimal structures m_X, m_y . Then the following statements are equivalent:

(1) f is M-precontinuous.

(2) $f^{-1}(V)$ is an *m*-preopen set for each *m*-open set V in Y.

(3) $f(mpCl(A)) \subseteq mCl(f(A))$ for $A \subseteq X$.

(4) $mpCl(f^{-1}(B)) \subseteq f^{-1}(mCl(B))$ for $B \subseteq Y$.

(5) $f^{-1}(mInt(B)) \subseteq mpInt(f^{-1}(B))$ for $B \subseteq Y$.

3. *M*-preclosed graph and M^* -preopen mapping

Definition 3.1. Let $f : (X, m_X) \to (Y, m_Y)$ be a function on two spaces with minimal structures m_X and m_Y . Then f has an M-preclosed graph if for each $(x, y) \in (X \times Y) - G(f)$, there exist an m-preopen set U containing x and an m-open set V containing y such that $(U \times V) \cap$ $G(f) = \emptyset$.

Lemma 3.2. Let $f: (X, m_X) \to (Y, m_Y)$ be a function on two spaces with minimal structures m_X and m_Y . Then f has an M-preclosed graph if and only if for each $(x, y) \in (X \times Y) - G(f)$, there exist an mpreopen set U containing x and an m-open set V containing y such that $f(U) \cap V = \emptyset$.

Let (X, m_X) be a space with a minimal structure m_X . Then X is said to be $m-T_2$ [4] if for any distinct points x and y of X, there exist disjoint m-open sets U, V such that $x \in U$ and $y \in V$. **Theorem 3.3.** Let $f : (X, m_X) \to (Y, m_Y)$ be a function on two spaces with minimal structures m_X and m_Y . If f is M-precontinuous and Y is m- T_2 , then G(f) is an M-preclosed graph.

Proof. Let $(x, y) \in (X \times Y) - G(f)$; then $f(x) \neq y$. Since Y is m- T_2 , there are disjoint open sets U, V such that $f(x) \in U, y \in V$. Then for $f(x) \in U$, by *m*-precontinuity, there exists an *m*-preopen set G containing x such that $f(G) \subseteq U$. Consequently, there exist an *m*-open set V and *m*-preopen set G containing y, x, respectively, such that $f(G) \cap V = \emptyset$. Therefore, G(f) is *M*-preclosed graph. \Box

Definition 3.4. ([2]) Let (X, m_X) be a space with a minimal structure m_X . Then X is said to be *m*-pre- T_2 if for any distinct points x and y of X, there exist disjoint *m*-preopen sets U, V such that $x \in U$ and $y \in V$.

Theorem 3.5. Let $f : (X, m_X) \to (Y, m_Y)$ be a function on two spaces with minimal structures m_X and m_Y . If f is an injective and M-precontinuous function and if Y is m- T_2 , then X is m-pre- T_2 .

Proof. Obvious.

Theorem 3.6. Let $f : (X, m_X) \to (Y, m_Y)$ be a function on two spaces with minimal structures m_X and m_Y . If f is an injective Mprecontinuous function with an M-preclosed graph, then X is m-pre- T_2 .

Proof. Let x_1 and x_2 be any distinct points of X. Then $f(x_1) \neq f(x_2)$, so $(x_1, f(x_2)) \in (X \times Y) - G(f)$. Since the graph G(f) is *m*-preclosed graph, there exist an *m*-preopen set U containing x_1 and $V \in \tau$ containing $f(x_2)$ such that $f(U) \cap V = \emptyset$. Since f is *M*-precontinuous, $f^{-1}(V)$ is an *m*-preopen set containing x_2 such that $U \cap f^{-1}(V) = \emptyset$. Hence X is *m*-pre- T_2 .

Definition 3.7. ([2]) A subset A of a space (X, m_X) with a minimal structure m_X is said to be *m*-precompact (resp. almost *m*-precompact) relative to A if every collection $\{U_i : i \in J\}$ of *m*-preopen subsets of X such that $A \subseteq \bigcup \{U_i : i \in J\}$, there exists a finite subset J_0 of J such that $A \subseteq \bigcup \{U_j : j \in J_0\}$ (resp. $A \subseteq \bigcup \{mpCl(U_j) : j \in J_0\}$). A subset A of a minimal structure (X, m_X) is said to be *m*-precompact (resp. almost *m*-precompact) if A is *m*-precompact (resp. almost *m*-precompact) as a subspace of X.

A subset A of a space (X, m_X) with a minimal structure m_X is said to be *m*-compact [4] (resp. almost *m*-compact, nearly *m*-compact) relative

to A if every collection $\{U_i : i \in J\}$ of m-open subsets of X such that $A \subseteq \cup \{U_i : i \in J\}$, there exists a finite subset J_0 of J such that $A \subseteq \cup \{U_j : j \in J_0\}$ (resp. $A \subseteq \cup \{mCl(U_j) : j \in J_0\}$, $A \subseteq \cup \{mInt(mCl(U_j)) : j \in J_0\}$).

Theorem 3.8. Let $f : (X, m_X) \to (Y, m_Y)$ be an *M*-precontinuous function on two spaces with minimal structures m_X and m_Y . If *A* is an *m*-precompact set, then f(A) is *m*-compact.

Proof. Obvious.

Theorem 3.9. Let $f : (X, m_X) \to (Y, m_Y)$ be an *M*-precontinuous function on two spaces with minimal structures m_X and m_Y . If *A* is an almost *m*-precompact set, then f(A) is almost *m*-compact.

Proof. Let $\{U_i : i \in J\}$ be an *m*-open cover of f(A) in *Y*. Then since f is an *M*-precontinuous function, $\{f^{-1}(U_i) : i \in J\}$ is an *m*-preopen cover of A in X. By *m*-precompactness, there exists $J_0 = \{j_1, j_2, \cdots, j_n\} \subseteq J$ such that $A \subseteq \bigcup_{j \in J_0} mpCl(f^{-1}(U_j))$. From *M*-precontinuity of f, we have

$$f(A) \subseteq f(\bigcup_{j \in J_0} mpCl(f^{-1}(U_j))) \subseteq f(\bigcup_{j \in J_0} f^{-1}(mCl(U_j)))$$

$$\subseteq \bigcup_{j \in J_0} mCl(U_j).$$

Thus $f(A)$ is almost *m*-compact.

Definition 3.10. Let $f : (X, m_X) \to (Y, m_Y)$ be a function on two spaces with minimal structures m_X and m_Y . Then f is said to be M^* -preopen if for each *m*-preopen set U in X, f(U) is *m*-open.

Theorem 3.11. Let $f : (X, m_X) \to (Y, m_Y)$ be a function on two spaces with minimal structures m_X and m_Y .

(1) f is M^* -preopen.

(2) $f(mpInt(A)) \subseteq mInt(f(A))$ for $A \subseteq X$.

(3) $mpInt(f^{-1}(B)) \subseteq f^{-1}(mInt(B))$ for $B \subseteq Y$.

(4) For each $x \in X$ and each *m*-preopen set U containing x, there is an *m*-open set V such that $f(x) \in V \subseteq f(U)$.

Then $(1) \Rightarrow (2) \Leftrightarrow (3) \Leftrightarrow (4)$.

Proof. (1)
$$\Rightarrow$$
 (2) For $A \subseteq X$,
 $f(mpInt(A)) = f(\cup\{B : B \subseteq A, B \text{ is } m\text{-preopen}\})$
 $= \cup\{f(B) : f(B) \subseteq f(A), f(B) \text{ is } m\text{-open}\}$
 $\subseteq \cup\{U : U \subseteq f(A), U \text{ is } m\text{-open}\}$
 $= mInt(f(A))$

Hence $f(mpInt(A)) \subseteq mInt(f(A))$.

 $(2) \Rightarrow (3)$ For $B \subseteq Y$, from (2) it follows that

$$f(mpInt(f^{-1}(B))) \subseteq mInt(f(f^{-1}(B))) \subseteq mInt(B).$$

Hence we get (3).

Similarly, we get $(3) \Rightarrow (2)$.

 $(2) \Rightarrow (4)$ For each $x \in X$ and each *m*-preopen set *U* containing *x*, since U = mpInt(U), by (2), f(U) = mInt(f(U)) is obtained. So from definition of interior operator on m_Y , there is an *m*-open set *V* such that $f(x) \in V \subseteq f(U)$.

 $(4) \Rightarrow (2)$ For $A \subseteq X$, if $y \in f(mpInt(A))$, then there is $x \in mpInt(A)$ such that f(x) = y. Since mpInt(A) is *m*-preopen, by (4), there exists an *m*-open set *V* such that $f(x) \in V \subseteq f(mpInt(A)) \subseteq f(A)$. Consequently, $y = f(x) \in mInt(f(A))$.

Example 3.12. Let $X = \{a, b, c\}$ and $m_X = \{\emptyset, \{a\}, \{b\}, X\}$. Consider the identity function $f : (X, m_X) \to (X, m_X)$ Then f satisfies the condition (2) in Theorem 3.11, but it is not M^* -open because for m-preopen set $\{a, b\}, f(\{a, b\})$ is not m-open.

A minimal structure m_X on a nonempty set X is said to have property (\mathcal{B}) [4] if the union of any family of subsets belonging to m_X belongs to m_X

Lemma 3.13. ([4]) Let m_X be a minimal structure on a nonempty set X satisfying (\mathcal{B}). For $A \subseteq X$, the following are equivalent:

(1) $A \in m_X$ if and only if mInt(A) = A.

(2) A is m-closed if and only if mCl(A) = A.

Corollary 3.14. Let $f : (X, m_X) \to (Y, m_Y)$ be a function on two spaces with minimal structures m_X and m_Y . If m_Y has property (\mathcal{B}) , then the following are equivalent:

(1) f is M^* -preopen.

(2) $f(mpInt(A)) \subseteq mInt(f(A))$ for $A \subseteq X$.

(3) $mpInt(f^{-1}(B)) \subseteq f^{-1}(mInt(B))$ for $B \subseteq Y$.

(4) For each $x \in X$ and each *m*-preopen set U containing x, there is an *m*-open set V such that $f(x) \in V \subseteq f(U)$.

Definition 3.15. A subset A of a space (X, m_X) with a minimal structure m_X is said to be *nearly* m-precompact relative to A if every collection $\{U_i : i \in J\}$ of m-open subsets of X such that $A \subseteq \bigcup \{U_i : i \in J\}$, there exists a finite subset J_0 of J such that $A \subseteq \bigcup \{mpInt(mpCl(U_j)) : j \in J_0\}$. A subset A of a minimal structure (X, m_X) is said to be *nearly* m-precompact if A is nearly m-precompact relative to A.

Theorem 3.16. Let $f : (X, m_X) \to (Y, m_Y)$ be an *M*-precontinuous and *M*^{*}-preopen mapping on two spaces with minimal structures m_X and m_Y . If *A* is a nearly *m*-precompact set, then f(A) is nearly *m*compact.

Proof. Let $\{U_i : i \in J\}$ be an *m*-open cover of f(A) in *Y*. Then since *f* is an *M*-precontinuous function, $\{f^{-1}(U_i) : i \in J\}$ is an *m*preopen cover of *A* in *X*. By *m*-precompactness, there exists $J_0 =$ $\{j_1, j_2, \dots, j_n\} \subseteq J$ such that $A \subseteq \bigcup_{j \in J_0} mpInt(mpCl(f^{-1}(U_j)))$. From *M*-precontinuity and Theorem 3.11, it follows

$$f(\cup_{j\in J_0} mpInt(mpCl(f^{-1}(U_j)))) \subseteq f(\cup_{j\in J_0} mpInt(f^{-1}(mCl(U_j))))$$
$$= \cup_{j\in J_0} f(mpInt(f^{-1}(mCl(U_j))))$$
$$\subseteq \cup_{j\in J_0} mInt(f(f^{-1}(mCl(U_j))))$$
$$\subseteq \cup_{j\in J_0} mInt(mCl(U_j)).$$

This implies $f(A) \subseteq \bigcup_{j \in J_0} mInt(mCl(U_j))$ and hence f(A) is nearly *m*-compact.

References

- W. K. Min and Y. K. Kim; m-Preopen Sets and M-Precontinuity On Spaces With Minimal Structures, Advances in Fuzzy Sets and Systems, 4(3) (2009), 237-245.
- 2. ———; On Minimal Precontinuous Functions, Journal of ChungCheong Mathematical Society, accepted.
- V. Popa and T. Noiri; On the definition of some generalized forms of continuity under minimal conditions, Mem. Fac. Sci. Kochi. Univ. Ser. Math. 22(2001), 9-19.
- V. Popa and T. Noiri; On M-continuous functions, Anal, Univ. "Dunarea de Jos" Galati, Ser. Mat. Fiz. Mec. Teor., Fasc. II, 18(23) (2000), 31-41.

Won Keun Min and Young Key Kim

Department of Mathematics, Kangwon National University, Chuncheon, 200-701, Korea *E-mail*: wkmin@kangwon.ac.kr

Department of Mathematics, MyongJi University, Youngin 449-728, Korea. *E-mail*: ykkim@mju.ac.kr