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MATRIX RINGS AND ITS TOTAL RINGS OF FRACTIONS
SANG CHEOL LEE

ABSTRACT. Let R be a commutative ring with identity. Then we prove

My (R) =GLn(R)
U{A € M,(R)|detA+#0 and det A ¢ U(R)}
U Z(Mn(R))

where U(R) denotes the set of all units of R. In particular, it will be
proved that the full matrix ring My (F) over a field F is the disjoint union
of the general linear group GL,(F) of degree n over the field F' and the
set Z(My (F)) of all zero-divisors of My, (F'). Using the result and universal
mapping property we prove that M, (F) is its total ring of fractions.

0. Introduction

Unless we state explicitly, we shall not assume that our rings are commuta-
tive, but we shall always assume that every ring has an identity. Let R be a
ring. An element a € R is called a zero-divisor of R if there exists a non-zero
element b € R such that ab = 0. Let Z(R) denote the set of all zero-divisors of
R. Then 0 € Z(R).

A commutative ring R is called an integral domain if Z(R) = {0}. For

example, the ring Z of integers is an integral domain, but Z? is not.

1. Localizations of Commutative Rings

Let A be a commutative ring and let S be a multiplicatively closed set in
A. Define amap f: A — S 1A by f(z) = 2/1, where € A. Then f is a ring
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homomorphism. This is called the natural ring homomorphism.

LEMMA 1.1. Let A be an integral domain. Then the following are true.

(1) A\{0} is a multiplicatively closed set in A.

(2) (A\{0})~1A is the field of fractions of A.

(3) If F is the field of fractions of A, then the natural ring homomorphism
f: A — F is injective. O

However, the natural ring homomorphism f : A — S~!A is not necessarily
injective.
Let A be a field and let F' be the field of fractions of A. If s is a non-zero

element of A, then

s /1=(s/1)"'=1/sin F

Hence A is isomorphic to F'.
Let A, B be commutative rings and let f : A — B be a ring homomorphism.
Then f(A) is a subring of B. However, f(A) is not always an ideal of B.

PROPOSITION 1.2. Let A be a commutative ring and let F' be a field. Let
g : A — F be a non-zero ring homomorphism and let p = Ker(g). Then the

following are true.

(1) p is a prime ideal of A.
(2) The field Ay /pA, can be embedded in the field F. O

LEMMA 1.3. Let A be a commutative ring and let I be an ideal of A. Let
S be a multiplicatively closed set in A such that SN I = (). Then the following

are true.

(1) If S is the image of S under the natural homomorphism 7 : A — A/I,
then S is a multiplicatively closed set in A/I.
(2)
SilA ~ o—1
= STHA/I).
(I

If we use Lemma 1.3 (2) and Lemma 1.1, then we can get the following

result.
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PROPOSITION 1.4. Let A be a commutative ring and let p be a prime ideal
of A. Then the following are true.
(1) “RBER — A/p\{0+p} in A/p.
(2) The field of fractions of the integral domain A/p is isomorphic to
Ay /pA,. O

Proposition 1.4 (2) can be proved alternatively as follows. Let 7: A — A/p
be the natural homomorphism. Let oo : A/p — (A/p)o be the natural ring
homomorphism. Then by Lemma 1.1, ¢g : A/p — (A/p)o is injective. Consider
the composite map g : A = A/p 2% (A/p)o. Then g is a ring homomorphism
with Ker(g) = p. Consider the following diagram

A = (A/p)o

AN /
AP

Then by the universal mapping property(see [E95, p.60]) there exists a homo-
morphism h : A, — (A/p)o such that ho f = g. Further, h is an epimor-
phism with Ker(h) = pA,. Hence, by the first isomorphism theorem for rings,
Ay /pAy = (A/p)o, as required.

COROLLARY 1.5. Let A be a commutative ring. If m is a maximal ideal of

A, then A/m is isomorphic to Ay /mAy,. O

2. Matrix Rings over Commutative Rings

Let R be a ring. An element a € R is called a unit element of R if there
exists an element b € R such that ab=1, ba = 1. If a € R is a unit element of
R, then a # 0. Let U(R) denote the set of all unit elements of R.

If Fis a field, then U(F) = F\{0}. For the following result, see [FISO03,
Exercise 27 (a), p.231].

PROPOSITION 2.1. Let F be a field and let A € M,,(F'). Then

det(adjA) = (detA)" .
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Proof. Let A € M, (F'). Then A adjA = (detA)I.
Assume that detA # 0. Since detA det(adjA) = (detA)™, we have

det(adjA) = (detA)"*.
Assume that detA = 0. If A =0, then adjA = 0 and hence
det(adjA) = 0 = (detA)" .

Assume that A # 0. Note that A adjA = (detA)] = 0. We can prove that
adjA is singular. For otherwise, there exit nonsingular matrices P, @ such that

P(adjA)@ = I. Then

A=AP'IP = AP Y(P(adjA)Q)P = A(adj A)QP = 0QP = 0.
This is a contradiction. Hence adjA is singular. Thus,

det(adjA) = 0 = (detA)" .

Let R be a commutative ring. Let

aix aiz -+ Qin

a1 QAg2 -+ Q2p
A =

an1 Ap2 - Opn

be in M, (R). For each i, j € {1,2,---,n}, let A, ; be the matrix which is
obtained from A by deleting the i-th row and j-th column. Then

aii ai2 s al,j—1 ai j+1 - a1n

a21 Q2 - Q251 asj+1 - aon
Ai,j = aji—1,1 @i—1,2 - Gi—15-1 Qi—14+1 " Qj—1n
@i+1,1 Qit1,2 0 Gipl—1 Gigl g+l Ait1n

Gn1 an2 ce An,j—1 Qn,j4+1 s Ann
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For each s € {1,2,--- ,i—1,i+1,--- ;n}andt € {1,2,--- ,7—1,5+1,--- ,n},

let Ay be the cofactor of ags: as an entry of the (n — 1) X (n — 1) matrix [1”

Then
All
A12
ad.](/i%]) = A17j_1
Al
Aln

Now, for each j € {1,2,---

A21
A22

AQ,j—l

Az j1

A2n

Ai_ia
A1

A1

Aim1j41

Ai—l,n

Aitin
A2

Aivi1-1
Aig1j41

Ai+1,n

Anl
An2

ATI,YL

,m}, construct an n x n matrix B, over R as follows.

The entries of j-th row and j-th column of B; are all zero and the remaining

entries of B; are from adj(4; ;). More precisely,

where

Ai—ia
A1

Ai_1j1
0

Aic1j41

0
0

o OO -k

=J
s
>1+ 2

Then we have the following result.

Aivi11
Aitip

Aip1,j1
0

Aiv1j41

As, n
ifj<i
if > .

Anl
An2
An,j—l
0
An,j+1
Ann
Anl
An2
An,j—l
0

Anj+

A nn

ifj=i

if j#i.
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LEMMA 2.2. Let R be a commutative ring. Let A € M,(R). For each
Jj€{1,2,---,n}, let B; be constructed as above. If adj(A) = 0, then for each
je{1,2,-- ,n}, AB; =0. O

If A € My(R) and adjA = 0, then A = 0. Now, let A € M3(R). Assume
that adj(A) = 0. Then for every i,j € {1,2,3}, A;; = 0. Let 4,5 € {1,2,3}.
Then

flmadj(fli,j) = det(/Lj)[ =0

since (—1)"det(A;;) = 0. If adj(A; j) = 0, then A; ; = 0 since 4, ; € My(R).
If for every 4, j € {1,2,3} adj(A; ;) = 0, then for every 4, j € {1,2,3}A4;; =0
and hence A = 0. Hence, A € Z(M3(R)).

If there exist ¢, j € {1,2,3} such that adj(A4; ;) # 0, then B; # 0. Hence by
Lemma 2.2 A € Z(M3(R)). Therefore if R is a commutative ring, then

M;s(R) =GLs(R)
U{A € M3(R) | detA #0 and det A ¢ U(R)}
U Z(Ms(R))

More generally we proceed as follows.

LEMMA 2.3. Let R be a commutative ring. Let A € M, (R). If detA = 0,
then A € Z(M,(R)).

Proof. Let
aix aiz - Qip
A 21 A22 -+ A2p
Gn1 an2 e Gnn

be in M,,(R). For each 4,5 € {1,2,--- ,n}, let M;; be the minor of A. Denote



elementary column operations by —. Then

ay1 My
a1 My

A —
an1 M1

—
a1 My

a1 M1y

a1 My

a1 M1

) (
an1Miq
e ( .

an1 My

a11 My
a1 My
an1Miq

a1 My,

a1 M4

an1 My

art My — -+ (=1)""ay, My,
ag1 Mi1 — -+ (=1)* a9, My,

CLnl]\411 — -+ (_1)n+nanann

a12 A1n
a22 a2n
An2 Ann
ay2Mi2 arnMin
a2 M2 aon Min
anaMia Gpn My,
a1,n—1Mipn—1
a2,n71M1,n71
an,nflMl,nfl
a17n_1M17n_1 detA
a2 1M1 n_1 0
an,n—lMl,n—l 0
a1,n—1Mipn—1
a2,n71M1,n71
an,nflMl,nfl 0

Matrix Rings and Its Total Rings of Fractions

So, there exists a non-singular matrix P € M, (R) such that

a1 My

a1 M1y

AP =

an1 My

a1,n—1Mipn—1

a2,n71M1,n71

an,nflMl,nfl

0
0

0
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Let E;; be the matrix in which the only non-zero entry is a 1 in the ith row

and jth column. Then

AP =Mii(a11E11 +a21Eor + -+ apn1En1)
+ Ml,nfl(al,nflEl,nfl + a2,n71E2,n71 + -+ an,nflEn,n71)~

Multiplying both sides of this equation by E,,, we have APFE,, = 0. Since
PE,, # 0, it follows that A € Z(M,(R)). O

If R is a commutative ring, then U (M, (R)) forms a group under the matrix
multiplication. This group is called the general linear group of degree n over R
and is denoted by GL,(R). Since A € U(M,(R)) if and only if det A € U(R),

we have

GL,(R)={A € M,(R) |det A€ U(R)}.

THEOREM 2.4. Let R be a commutative ring. Then

M, (R) =GL,(R)
U{A € M,(R) | detA # 0 and det A ¢ U(R)}
U Z(Mn(R))

Proof. Let A € M,(R). Then either det A € U(R) or det A ¢ U(R). If
det A € U(R), then A € GL,(R). Assume that det A ¢ U(R). If det A # 0,
then A € {A € M,(R)|det A+ 0and det A ¢ U(R)}. If det A =0, then by
Lemma 2.3 A € Z(M,(R)). O

3. The Total Rings of Fractions of Matrix Rings

LEMMA 3.1. If R is a ring, then

U(R) N Z(R) = 0.
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Proof. Suppose that U(R) N Z(R) # (). Take an element a € U(R) N Z(R).
Then a € U(R), so there exists an element b € R such that ab = 1, ba = 1.

a € Z(R), so there exists a non-zero element ¢ € R such that ac = 0. Then
¢ = 1lec = (ba)c = b(ac) = b0 = 0.
This contradiction shows that U(R) N Z(R) = 0. O

DEFINITION. Let R be a ring (not necessarily commutative). A multiplica-
tively closed subset S of R is said to be saturated if whenever zy € S, where x,

y € R, thenx € Sand y € S.

Note that this definition in non-commutative case coincides completely with

that in commutative case.

THEOREM 3.2. Let R be a unique factorization domain and let

S =U(R)U{a € R| a is a product of principal primes of R}.

)s = U(Mn(R)g) U Z(Mn(R)g).
4) U(M,(R)g) is a subgroup of GL,(Rg).
)g is Rg-isomorphic to My (Rsg).

Proof. (1) See [K74]. (2) By Theorem 2.4. (3) Let A/s be any element of
M, (R)g. Assume detA € S. Then

(A/s)(s adjA/detA)) = I/1,

(s adjA/detA))(A/s) =I/1.

So, (A/s)™' = sadjA/detA) € M,(R)g. Hence A/s € U(M,(R)g). Or,
assume detA ¢ S. Then by (2) A € Z(M,(A)). Hence A/s € Z(M,(A)g).
Therefore it follows from Lemma 3.1 that (3) holds.
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(4) Define a map ¢ : M,(R)g — M,(Rs) by

a1 aiz -+ Qip a11/5 a12/3

21 Q22 - A2p a21/8 a22/8
ol : R : /s) = : :

an1  ap2 e Ann anl/s anZ/S

a1n/$

aan /s

Qnn /S

Then ¢ is a well-defined injective ring homomorphism. Hence, U(M,,(R)g) is

a subgroup of GL,(Rg).
(5)
My (R)g = Mn(R) @r Rs
= an ®r Rg
= (R®R®---®R)®r Rs

~ (RQr Rs)® (R®r Rs)® -+ @ (R®r Rg)

~ (R@g Rs)™
~ Rg™

O

The following result comes from Theorem 2.4 and Lemma 3.1. However, we

give an alternative proof.

THEOREM 3.3. Let F be a field. Then M,,(F) = GL,(F)U Z(M,(F)).

Proof. Tt is clear that the result holds for n = 1.

Let n > 2. Assume A =0. Then Al = A=0. Hence A € Z(M,(F)).

Assume A # 0. Let E;; be the matrix in which the only non-zero entry is
a 1 in the ith row and jth column. Then by [K96, Theorem 1.20, p.65], A is
equivalent to F11 + Fag + - -+ + E,.,. for some r € {1,2,3,--- ,n}. There exist

nonsingular matrices P, @) such that

(*) PAQ=FEi1+ Eyp+---+E,..

If r =n, then PAQ = E11 + Eos + -+ + E,, = I and hence det A # 0. Thus,
A€ GL,(F). Assume r < n. Multiplying E, 11,1 on both sides of the equation
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(*), we have

PAQErJrl,l - EllEr+1,1 + E22Er+1,1 + -+ ETTET+1,1
=61, 4111+ 0,1 F0+ -+ 01 En
=0

Hence AQE,41,1 = 0 and QE,411 # 0. Thus A € Z(M,(F)). Therefore
M, (F)=GL,(F)U Z(M,(F)). It follows from Lemma 3.1 that

M, (F) = GL,(F) U Z(M,(F)).
O

THEOREM 3.4. If F is a field, then the matrix ring M, (F) is its total ring

of fractions.

Proof. Assume that F' is a field. Then
GLn(F) ={A € My(F) | det(A) # 0} = U(Mn(F)).

Hence it is clear that G, (F) is a saturated multiplicatively closed subset of
M, (F). Let So = M, (F)\Z(M,(F)). Then by Theorem 3.3, Sy = GL,(F)
and hence Sy is a saturated multiplicatively closed subset of M, (F'). Thus
M, (F)g, is the total ring of fractions of M, (F") ([AM69, Chapter 3, Exercise
9, p.44] and [H88].) Let id : M, (F) — M, (F) be the identity ring homomor-
phism. Since

So = GL.(F) = U(M,(F)),

we can see that id(A) is a unit in M, (F) for all A € Sy. Consider the following

diagram )

AN /!
Mn(F)g,

Then by the universal mapping property (see [E95, p.60]) there exists a homo-
morphism h : My (F)g, — M, (F) such that ho f =id. From this equation, it
follows that h is an epimorphism. Further, for any A/B € M, (F)g,

h(A/B) = h(A/I -1/B) = h(f(A)h(f(B~Y)) = id(A)id(B~") = AB~".
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From this equation we can see that h is injective. Hence h is bijective. Thus h
is an isomorphism. This shows that M, (F) = M, (F)g,. Therefore M, (F) is

its total ring of fractions. O

Let C be the complex number field. Then it is clear that M, (C) is iso-
morphic to M, (C)gy, () because GL,(C) = U(M,(C)). If we let Sy =
M, (C)\Z(M,(C)), then it follows from Theorem 3.3 that

M,(C) = M, (C)s,.

0

Hence M, (C) is its total ring of fractions. In fact, the proof of Theorem 3.4 is

standard.
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