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MATRIX RINGS AND ITS TOTAL RINGS OF FRACTIONS

Sang Cheol Lee

Abstract. Let R be a commutative ring with identity. Then we prove

Mn(R) =GLn(R)

∪ {A ∈ Mn(R) | detA 6= 0 and det A /∈ U(R)}
∪ Z(Mn(R))

where U(R) denotes the set of all units of R. In particular, it will be

proved that the full matrix ring Mn(F ) over a field F is the disjoint union

of the general linear group GLn(F ) of degree n over the field F and the

set Z(Mn(F )) of all zero-divisors of Mn(F ). Using the result and universal

mapping property we prove that Mn(F ) is its total ring of fractions.

0. Introduction

Unless we state explicitly, we shall not assume that our rings are commuta-

tive, but we shall always assume that every ring has an identity. Let R be a

ring. An element a ∈ R is called a zero-divisor of R if there exists a non-zero

element b ∈ R such that ab = 0. Let Z(R) denote the set of all zero-divisors of

R. Then 0 ∈ Z(R).

A commutative ring R is called an integral domain if Z(R) = {0}. For

example, the ring Z of integers is an integral domain, but Z2 is not.

1. Localizations of Commutative Rings

Let A be a commutative ring and let S be a multiplicatively closed set in

A. Define a map f : A −→ S−1A by f(x) = x/1, where x ∈ A. Then f is a ring
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homomorphism. This is called the natural ring homomorphism.

Lemma 1.1. Let A be an integral domain. Then the following are true.

(1) A\{0} is a multiplicatively closed set in A.

(2) (A\{0})−1A is the field of fractions of A.

(3) If F is the field of fractions of A, then the natural ring homomorphism

f : A −→ F is injective. ¤

However, the natural ring homomorphism f : A −→ S−1A is not necessarily

injective.

Let A be a field and let F be the field of fractions of A. If s is a non-zero

element of A, then

s−1/1 = (s/1)−1 = 1/s in F

Hence A is isomorphic to F .

Let A, B be commutative rings and let f : A −→ B be a ring homomorphism.

Then f(A) is a subring of B. However, f(A) is not always an ideal of B.

Proposition 1.2. Let A be a commutative ring and let F be a field. Let

g : A −→ F be a non-zero ring homomorphism and let p = Ker(g). Then the

following are true.

(1) p is a prime ideal of A.

(2) The field Ap/pAp can be embedded in the field F . ¤

Lemma 1.3. Let A be a commutative ring and let I be an ideal of A. Let

S be a multiplicatively closed set in A such that S ∩ I = ∅. Then the following

are true.

(1) If S̄ is the image of S under the natural homomorphism π : A −→ A/I,

then S̄ is a multiplicatively closed set in A/I.

(2)
S−1A

IS−1A
∼= S̄−1(A/I).

¤

If we use Lemma 1.3 (2) and Lemma 1.1, then we can get the following

result.
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Proposition 1.4. Let A be a commutative ring and let p be a prime ideal

of A. Then the following are true.

(1) (A\p)+p
p = A/p\{0 + p} in A/p.

(2) The field of fractions of the integral domain A/p is isomorphic to

Ap/pAp. ¤

Proposition 1.4 (2) can be proved alternatively as follows. Let π : A −→ A/p

be the natural homomorphism. Let ϕ0 : A/p −→ (A/p)0 be the natural ring

homomorphism. Then by Lemma 1.1, ϕ0 : A/p −→ (A/p)0 is injective. Consider

the composite map g : A
π−→ A/p

ϕ0−→ (A/p)0. Then g is a ring homomorphism

with Ker(g) = p. Consider the following diagram

A
g−→ (A/p)0

f ↘ ↗
Ap

Then by the universal mapping property(see [E95, p.60]) there exists a homo-

morphism h : Ap −→ (A/p)0 such that h ◦ f = g. Further, h is an epimor-

phism with Ker(h) = pAp. Hence, by the first isomorphism theorem for rings,

Ap/pAp
∼= (A/p)0, as required.

Corollary 1.5. Let A be a commutative ring. If m is a maximal ideal of

A, then A/m is isomorphic to Am/mAm. ¤

2. Matrix Rings over Commutative Rings

Let R be a ring. An element a ∈ R is called a unit element of R if there

exists an element b ∈ R such that ab = 1, ba = 1. If a ∈ R is a unit element of

R, then a 6= 0. Let U(R) denote the set of all unit elements of R.

If F is a field, then U(F ) = F\{0}. For the following result, see [FIS03,

Exercise 27 (a), p.231].

Proposition 2.1. Let F be a field and let A ∈ Mn(F ). Then

det(adjA) = (detA)n−1.
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Proof. Let A ∈ Mn(F ). Then A adjA = (detA)I.

Assume that detA 6= 0. Since detA det(adjA) = (detA)n, we have

det(adjA) = (detA)n−1.

Assume that detA = 0. If A = 0, then adjA = 0 and hence

det(adjA) = 0 = (detA)n−1.

Assume that A 6= 0. Note that A adjA = (detA)I = 0. We can prove that

adjA is singular. For otherwise, there exit nonsingular matrices P , Q such that

P (adjA)Q = I. Then

A = AP−1IP = AP−1(P (adjA)Q)P = A(adj A)QP = 0QP = 0.

This is a contradiction. Hence adjA is singular. Thus,

det(adjA) = 0 = (detA)n−1.

¤

Let R be a commutative ring. Let

A =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann


 .

be in Mn(R). For each i, j ∈ {1, 2, · · · , n}, let Ãi,j be the matrix which is

obtained from A by deleting the i-th row and j-th column. Then

Ãi,j =




a11 a12 · · · a1,j−1 a1,j+1 · · · a1n

a21 a22 · · · a2,j−1 a2,j+1 · · · a2n

...
...

. . .
...

...
. . .

...
ai−1,1 ai−1,2 · · · ai−1,j−1 ai−1,j+1 · · · ai−1,n

ai+1,1 ai+1,2 · · · ai+1,j−1 ai+1,j+1 · · · ai+1,n

...
...

. . .
...

...
. . .

...
an1 an2 · · · an,j−1 an,j+1 · · · ann




.
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For each s ∈ {1, 2, · · · , i−1, i+1, · · · , n} and t ∈ {1, 2, · · · , j−1, j +1, · · · , n},
let Ast be the cofactor of ast as an entry of the (n− 1)× (n− 1) matrix Ãi,j .

Then

adj(Ãi,j) =




A11 A21 · · · Ai−1,1 Ai+1,1 · · · An1

A12 A22 · · · Ai−1,2 Ai+1,2 · · · An2

...
...

. . .
...

...
. . .

...
A1,j−1 A2,j−1 · · · Ai−1,j−1 Ai+1,j−1 · · · An,j−1

A1,j+1 A2,j+1 · · · Ai−1,j+1 Ai+1,j+1 · · · An,j+1

...
...

. . .
...

...
. . .

...
A1n A2n · · · Ai−1,n Ai+1,n · · · Ann




.

Now, for each j ∈ {1, 2, · · · , n}, construct an n×n matrix Bj over R as follows.

The entries of j-th row and j-th column of Bj are all zero and the remaining

entries of Bj are from adj(Ãi,j). More precisely,

Bj =








A11 · · · Ai−1,1 0 Ai+1,1 · · · An1

A12 · · · Ai−1,2 0 Ai+1,2 · · · An2

...
. . .

...
...

...
. . .

...
A1,j−1 · · · Ai−1,j−1 0 Ai+1,j−1 · · · An,j−1

0 · · · 0 0 0 · · · 0
A1,j+1 · · · Ai−1,j+1 0 Ai+1,j+1 · · · An,j+1

...
. . .

...
...

...
. . .

...
A1n · · · Ai−1,n 0 Ai+1,n · · · Ann




if j = i




A11 · · · As−1,1 0 As, 1 · · · An1

A12 · · · As−1,2 0 As, 2 · · · An2

...
. . .

...
...

...
. . .

...
A1,j−1 · · · As−1,j−1 0 As, j−1 · · · An,j−1

0 · · · 0 0 0 · · · 0
A1,j+1 · · · As−1,j+1 0 As, j+1 · · · An,j+1

...
. . .

...
...

...
. . .

...
A1n · · · As−1,n 0 As, n · · · Ann




if j 6= i.

where

s

{
=j if j < i

≥i + 2 if j > i.

Then we have the following result.
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Lemma 2.2. Let R be a commutative ring. Let A ∈ Mn(R). For each

j ∈ {1, 2, · · · , n}, let Bj be constructed as above. If adj(A) = 0, then for each

j ∈ {1, 2, · · · , n}, ABj = 0. ¤

If A ∈ M2(R) and adjA = 0, then A = 0. Now, let A ∈ M3(R). Assume

that adj(A) = 0. Then for every i, j ∈ {1, 2, 3}, Aij = 0. Let i, j ∈ {1, 2, 3}.
Then

Ãi,jadj(Ãi,j) = det(Ãij)I = 0

since (−1)i+jdet(Ãij) = 0. If adj(Ãi,j) = 0, then Ãi,j = 0 since Ãi,j ∈ M2(R).

If for every i, j ∈ {1, 2, 3} adj(Ãi,j) = 0, then for every i, j ∈ {1, 2, 3}Ãi,j = 0

and hence A = 0. Hence, A ∈ Z(M3(R)).

If there exist i, j ∈ {1, 2, 3} such that adj(Ãi,j) 6= 0, then Bj 6= 0. Hence by

Lemma 2.2 A ∈ Z(M3(R)). Therefore if R is a commutative ring, then

M3(R) =GL3(R)

∪ {A ∈ M3(R) | detA 6= 0 and det A /∈ U(R)}
∪ Z(M3(R))

More generally we proceed as follows.

Lemma 2.3. Let R be a commutative ring. Let A ∈ Mn(R). If detA = 0,

then A ∈ Z(Mn(R)).

Proof. Let

A =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann


 .

be in Mn(R). For each i, j ∈ {1, 2, · · · , n}, let Mij be the minor of A. Denote
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elementary column operations by −→. Then

A −→




a11M11 a12 · · · a1n

a21M11 a22 · · · a2n
...

...
. . .

...
an1M11 an2 · · · ann




−→ · · ·

−→




a11M11 a12M12 · · · a1nM1n

a21M11 a22M12 · · · a2nM1n
...

...
. . .

...
an1M11 an2M12 · · · annM1n




−→




a11M11 · · · a1,n−1M1,n−1 a11M11 − · · ·+ (−1)1+na1nM1n

a21M11 · · · a2,n−1M1,n−1 a21M11 − · · ·+ (−1)2+na2nM1n

...
. . .

...
...

an1M11 · · · an,n−1M1,n−1 an1M11 − · · ·+ (−1)n+nannM1n




=




a11M11 · · · a1,n−1M1,n−1 detA
a21M11 · · · a2,n−1M1,n−1 0

...
. . .

...
...

an1M11 · · · an,n−1M1,n−1 0




=




a11M11 · · · a1,n−1M1,n−1 0
a21M11 · · · a2,n−1M1,n−1 0

...
. . .

...
...

an1M11 · · · an,n−1M1,n−1 0


 .

So, there exists a non-singular matrix P ∈ Mn(R) such that

AP =




a11M11 · · · a1,n−1M1,n−1 0
a21M11 · · · a2,n−1M1,n−1 0

...
...

. . .
...

an1M11 · · · an,n−1M1,n−1 0


 .
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Let Eij be the matrix in which the only non-zero entry is a 1 in the ith row

and jth column. Then

AP =M11(a11E11 + a21E21 + · · ·+ an1En1)

+ · · ·
+ M1,n−1(a1,n−1E1,n−1 + a2,n−1E2,n−1 + · · ·+ an,n−1En,n−1).

Multiplying both sides of this equation by Enn, we have APEnn = 0. Since

PEnn 6= 0, it follows that A ∈ Z(Mn(R)). ¤

If R is a commutative ring, then U(Mn(R)) forms a group under the matrix

multiplication. This group is called the general linear group of degree n over R

and is denoted by GLn(R). Since A ∈ U(Mn(R)) if and only if det A ∈ U(R),

we have

GLn(R) = {A ∈ Mn(R) | det A ∈ U(R)}.

Theorem 2.4. Let R be a commutative ring. Then

Mn(R) =GLn(R)

∪ {A ∈ Mn(R) | detA 6= 0 and det A /∈ U(R)}
∪ Z(Mn(R))

Proof. Let A ∈ Mn(R). Then either det A ∈ U(R) or det A /∈ U(R). If

det A ∈ U(R), then A ∈ GLn(R). Assume that det A /∈ U(R). If det A 6= 0,

then A ∈ {A ∈ Mn(R) | det A 6= 0 and det A /∈ U(R)}. If det A = 0, then by

Lemma 2.3 A ∈ Z(Mn(R)). ¤

3. The Total Rings of Fractions of Matrix Rings

Lemma 3.1. If R is a ring, then

U(R) ∩ Z(R) = ∅.
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Proof. Suppose that U(R) ∩ Z(R) 6= ∅. Take an element a ∈ U(R) ∩ Z(R).

Then a ∈ U(R), so there exists an element b ∈ R such that ab = 1, ba = 1.

a ∈ Z(R), so there exists a non-zero element c ∈ R such that ac = 0. Then

c = 1c = (ba)c = b(ac) = b0 = 0.

This contradiction shows that U(R) ∩ Z(R) = ∅. ¤

Definition. Let R be a ring (not necessarily commutative). A multiplica-

tively closed subset S of R is said to be saturated if whenever xy ∈ S, where x,

y ∈ R, then x ∈ S and y ∈ S.

Note that this definition in non-commutative case coincides completely with

that in commutative case.

Theorem 3.2. Let R be a unique factorization domain and let

S = U(R) ∪ {a ∈ R | a is a product of principal primes of R}.

Then

(1) S is a saturated multiplicatively closed set in R.

(2) Mn(R) = {A ∈ Mn(R) | det A ∈ S} ∪ Z(Mn(R)).

(3) Mn(R)S = U(Mn(R)S) ∪̇ Z(Mn(R)S).

(4) U(Mn(R)S) is a subgroup of GLn(RS).

(5) Mn(R)S is RS-isomorphic to Mn(RS).

Proof. (1) See [K74]. (2) By Theorem 2.4. (3) Let A/s be any element of

Mn(R)S . Assume detA ∈ S. Then

(A/s)(s adjA/detA)) = I/1,

(s adjA/detA))(A/s) = I/1.

So, (A/s)−1 = s adjA/detA) ∈ Mn(R)S . Hence A/s ∈ U(Mn(R)S). Or,

assume detA /∈ S. Then by (2) A ∈ Z(Mn(A)). Hence A/s ∈ Z(Mn(A)S).

Therefore it follows from Lemma 3.1 that (3) holds.
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(4) Define a map ϕ : Mn(R)S −→ Mn(RS) by

ϕ(




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann


 /s) =




a11/s a12/s · · · a1n/s

a21/s a22/s · · · a2n/s
...

...
. . .

...
an1/s an2/s · · · ann/s




Then ϕ is a well-defined injective ring homomorphism. Hence, U(Mn(R)S) is

a subgroup of GLn(RS).

(5)

Mn(R)S
∼= Mn(R)⊗R RS

∼= Rn2 ⊗R RS

∼= (R⊕R⊕ · · · ⊕R)⊗R RS

∼= (R⊗R RS)⊕ (R⊗R RS)⊕ · · · ⊕ (R⊗R RS)

∼= (R⊗R RS)n2

∼= RS
n2

∼= Mn(RS).

¤

The following result comes from Theorem 2.4 and Lemma 3.1. However, we

give an alternative proof.

Theorem 3.3. Let F be a field. Then Mn(F ) = GLn(F ) ∪̇ Z(Mn(F )).

Proof. It is clear that the result holds for n = 1.

Let n ≥ 2. Assume A = 0. Then AI = A = 0. Hence A ∈ Z(Mn(F )).

Assume A 6= 0. Let Eij be the matrix in which the only non-zero entry is

a 1 in the ith row and jth column. Then by [K96, Theorem 1.20, p.65], A is

equivalent to E11 + E22 + · · · + Err for some r ∈ {1, 2, 3, · · · , n}. There exist

nonsingular matrices P , Q such that

(*) PAQ = E11 + E22 + · · ·+ Err.

If r = n, then PAQ = E11 + E22 + · · ·+ Enn = I and hence det A 6= 0. Thus,

A ∈ GLn(F ). Assume r < n. Multiplying Er+1,1 on both sides of the equation
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(*), we have

PAQEr+1,1 = E11Er+1,1 + E22Er+1,1 + · · ·+ ErrEr+1,1

= δ1,r+1E11 + δ2,r+1E21 + · · ·+ δr,r+1Er1

= 0

Hence AQEr+1,1 = 0 and QEr+1,1 6= 0. Thus A ∈ Z(Mn(F )). Therefore

Mn(F ) = GLn(F ) ∪ Z(Mn(F )). It follows from Lemma 3.1 that

Mn(F ) = GLn(F ) ∪̇ Z(Mn(F )).

¤

Theorem 3.4. If F is a field, then the matrix ring Mn(F ) is its total ring

of fractions.

Proof. Assume that F is a field. Then

GLn(F ) = {A ∈ Mn(F ) | det(A) 6= 0} = U(Mn(F )).

Hence it is clear that Gn(F ) is a saturated multiplicatively closed subset of

Mn(F ). Let S0 = Mn(F )\Z(Mn(F )). Then by Theorem 3.3, S0 = GLn(F )

and hence S0 is a saturated multiplicatively closed subset of Mn(F ). Thus

Mn(F )S0
is the total ring of fractions of Mn(F ) ([AM69, Chapter 3, Exercise

9, p.44] and [H88].) Let id : Mn(F ) −→ Mn(F ) be the identity ring homomor-

phism. Since

S0 = GLn(F ) = U(Mn(F )),

we can see that id(A) is a unit in Mn(F ) for all A ∈ S0. Consider the following

diagram
Mn(F ) id−→ Mn(F )

f ↘ ↗
Mn(F )S0

Then by the universal mapping property (see [E95, p.60]) there exists a homo-

morphism h : Mn(F )S0
−→ Mn(F ) such that h ◦ f = id. From this equation, it

follows that h is an epimorphism. Further, for any A/B ∈ Mn(F )S0
,

h(A/B) = h(A/I · I/B) = h(f(A))h(f(B−1)) = id(A)id(B−1) = AB−1.
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From this equation we can see that h is injective. Hence h is bijective. Thus h

is an isomorphism. This shows that Mn(F ) ∼= Mn(F )S0
. Therefore Mn(F ) is

its total ring of fractions. ¤

Let C be the complex number field. Then it is clear that Mn(C) is iso-

morphic to Mn(C)GLn(C) because GLn(C) = U(Mn(C)). If we let S0 =

Mn(C)\Z(Mn(C)), then it follows from Theorem 3.3 that

Mn(C) ∼= Mn(C)S0
.

Hence Mn(C) is its total ring of fractions. In fact, the proof of Theorem 3.4 is

standard.
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