MATRIX RINGS AND ITS TOTAL RINGS OF FRACTIONS

Sang Cheol Lee

$$
\begin{aligned}
& \text { Abstract. Let } R \text { be a commutative ring with identity. Then we prove } \\
& \qquad \begin{aligned}
M_{n}(R)= & G L_{n}(R) \\
& \cup\left\{A \in M_{n}(R) \mid \operatorname{det} A \neq 0 \text { and } \operatorname{det} A \notin U(R)\right\} \\
& \cup Z\left(M_{n}(R)\right)
\end{aligned}
\end{aligned}
$$

where $U(R)$ denotes the set of all units of R. In particular, it will be proved that the full matrix ring $M_{n}(F)$ over a field F is the disjoint union of the general linear group $G L_{n}(F)$ of degree n over the field F and the set $Z\left(M_{n}(F)\right)$ of all zero-divisors of $M_{n}(F)$. Using the result and universal mapping property we prove that $M_{n}(F)$ is its total ring of fractions.

0. Introduction

Unless we state explicitly, we shall not assume that our rings are commutative, but we shall always assume that every ring has an identity. Let R be a ring. An element $a \in R$ is called a zero-divisor of R if there exists a non-zero element $b \in R$ such that $a b=0$. Let $Z(R)$ denote the set of all zero-divisors of R. Then $0 \in Z(R)$.

A commutative ring R is called an integral domain if $Z(R)=\{0\}$. For example, the ring \mathbb{Z} of integers is an integral domain, but \mathbb{Z}^{2} is not.

1. Localizations of Commutative Rings

Let A be a commutative ring and let S be a multiplicatively closed set in A. Define a map $f: A \rightarrow S^{-1} A$ by $f(x)=x / 1$, where $x \in A$. Then f is a ring

[^0]homomorphism. This is called the natural ring homomorphism.
Lemma 1.1. Let A be an integral domain. Then the following are true.
(1) $A \backslash\{0\}$ is a multiplicatively closed set in A.
(2) $(A \backslash\{0\})^{-1} A$ is the field of fractions of A.
(3) If F is the field of fractions of A, then the natural ring homomorphism $f: A \rightarrow F$ is injective.

However, the natural ring homomorphism $f: A \rightarrow S^{-1} A$ is not necessarily injective.

Let A be a field and let F be the field of fractions of A. If s is a non-zero element of A, then

$$
s^{-1} / 1=(s / 1)^{-1}=1 / s \text { in } F
$$

Hence A is isomorphic to F.
Let A, B be commutative rings and let $f: A \rightarrow B$ be a ring homomorphism. Then $f(A)$ is a subring of B. However, $f(A)$ is not always an ideal of B.

Proposition 1.2. Let A be a commutative ring and let F be a field. Let $g: A \rightarrow F$ be a non-zero ring homomorphism and let $\mathfrak{p}=\operatorname{Ker}(g)$. Then the following are true.
(1) \mathfrak{p} is a prime ideal of A.
(2) The field $A_{\mathfrak{p}} / \mathfrak{p} A_{\mathfrak{p}}$ can be embedded in the field F.

Lemma 1.3. Let A be a commutative ring and let I be an ideal of A. Let S be a multiplicatively closed set in A such that $S \cap I=\emptyset$. Then the following are true.
(1) If \bar{S} is the image of S under the natural homomorphism $\pi: A \rightarrow A / I$, then \bar{S} is a multiplicatively closed set in A / I.
(2)

$$
\frac{S^{-1} A}{I S^{-1} A} \cong \bar{S}^{-1}(A / I)
$$

If we use Lemma 1.3 (2) and Lemma 1.1, then we can get the following result.

Proposition 1.4. Let A be a commutative ring and let \mathfrak{p} be a prime ideal of A. Then the following are true.
(1) $\frac{(A \backslash \mathfrak{p})+\mathfrak{p}}{\mathfrak{p}}=A / \mathfrak{p} \backslash\{0+\mathfrak{p}\}$ in A / \mathfrak{p}.
(2) The field of fractions of the integral domain A / \mathfrak{p} is isomorphic to $A_{\mathfrak{p}} / \mathfrak{p} A_{\mathfrak{p}}$.

Proposition 1.4 (2) can be proved alternatively as follows. Let $\pi: A \rightarrow A / \mathfrak{p}$ be the natural homomorphism. Let $\varphi_{0}: A / \mathfrak{p} \rightarrow(A / \mathfrak{p})_{0}$ be the natural ring homomorphism. Then by Lemma 1.1, $\varphi_{0}: A / \mathfrak{p} \rightarrow(A / \mathfrak{p})_{0}$ is injective. Consider the composite map $g: A \xrightarrow{\pi} A / \mathfrak{p} \xrightarrow{\varphi_{0}}(A / \mathfrak{p})_{0}$. Then g is a ring homomorphism with $\operatorname{Ker}(g)=\mathfrak{p}$. Consider the following diagram

Then by the universal mapping property(see [E95, p.60]) there exists a homomorphism $h: A_{\mathfrak{p}} \rightarrow(A / \mathfrak{p})_{0}$ such that $h \circ f=g$. Further, h is an epimorphism with $\operatorname{Ker}(h)=\mathfrak{p} A_{\mathfrak{p}}$. Hence, by the first isomorphism theorem for rings, $A_{\mathfrak{p}} / \mathfrak{p} A_{\mathfrak{p}} \cong(A / \mathfrak{p})_{0}$, as required.

Corollary 1.5. Let A be a commutative ring. If \mathfrak{m} is a maximal ideal of A, then A / \mathfrak{m} is isomorphic to $A_{\mathfrak{m}} / \mathfrak{m} A_{\mathfrak{m}}$.

2. Matrix Rings over Commutative Rings

Let R be a ring. An element $a \in R$ is called a unit element of R if there exists an element $b \in R$ such that $a b=1, b a=1$. If $a \in R$ is a unit element of R, then $a \neq 0$. Let $U(R)$ denote the set of all unit elements of R.

If F is a field, then $U(F)=F \backslash\{0\}$. For the following result, see [FIS03, Exercise 27 (a), p.231].

Proposition 2.1. Let F be a field and let $A \in M_{n}(F)$. Then

$$
\operatorname{det}(\operatorname{adj} A)=(\operatorname{det} A)^{n-1}
$$

Proof. Let $A \in M_{n}(F)$. Then $A \operatorname{adj} A=(\operatorname{det} A) I$.
Assume that $\operatorname{det} A \neq 0$. Since $\operatorname{det} A \operatorname{det}(\operatorname{adj} A)=(\operatorname{det} A)^{n}$, we have

$$
\operatorname{det}(\operatorname{adj} A)=(\operatorname{det} A)^{n-1}
$$

Assume that $\operatorname{det} A=0$. If $A=0$, then $\operatorname{adj} A=0$ and hence

$$
\operatorname{det}(\operatorname{adj} A)=0=(\operatorname{det} A)^{n-1}
$$

Assume that $A \neq 0$. Note that $A \operatorname{adj} A=(\operatorname{det} A) I=0$. We can prove that $\operatorname{adj} A$ is singular. For otherwise, there exit nonsingular matrices P, Q such that $P(\operatorname{adj} A) Q=I$. Then

$$
A=A P^{-1} I P=A P^{-1}(P(\operatorname{adj} A) Q) P=A(\operatorname{adj} A) Q P=0 Q P=0
$$

This is a contradiction. Hence $\operatorname{adj} A$ is singular. Thus,

$$
\operatorname{det}(\operatorname{adj} A)=0=(\operatorname{det} A)^{n-1}
$$

Let R be a commutative ring. Let

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right)
$$

be in $M_{n}(R)$. For each $i, j \in\{1,2, \cdots, n\}$, let $\tilde{A}_{i, j}$ be the matrix which is obtained from A by deleting the i-th row and j-th column. Then

$$
\tilde{A}_{i, j}=\left(\begin{array}{ccccccc}
a_{11} & a_{12} & \cdots & a_{1, j-1} & a_{1, j+1} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2, j-1} & a_{2, j+1} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
a_{i-1,1} & a_{i-1,2} & \cdots & a_{i-1, j-1} & a_{i-1, j+1} & \cdots & a_{i-1, n} \\
a_{i+1,1} & a_{i+1,2} & \cdots & a_{i+1, j-1} & a_{i+1, j+1} & \cdots & a_{i+1, n} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n, j-1} & a_{n, j+1} & \cdots & a_{n n}
\end{array}\right) .
$$

For each $s \in\{1,2, \cdots, i-1, i+1, \cdots, n\}$ and $t \in\{1,2, \cdots, j-1, j+1, \cdots, n\}$, let $A_{s t}$ be the cofactor of $a_{s t}$ as an entry of the $(n-1) \times(n-1)$ matrix $\tilde{A}_{i, j}$. Then

$$
\operatorname{adj}\left(\tilde{A}_{i, j}\right)=\left(\begin{array}{ccccccc}
A_{11} & A_{21} & \cdots & A_{i-1,1} & A_{i+1,1} & \cdots & A_{n 1} \\
A_{12} & A_{22} & \cdots & A_{i-1,2} & A_{i+1,2} & \cdots & A_{n 2} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
A_{1, j-1} & A_{2, j-1} & \cdots & A_{i-1, j-1} & A_{i+1, j-1} & \cdots & A_{n, j-1} \\
A_{1, j+1} & A_{2, j+1} & \cdots & A_{i-1, j+1} & A_{i+1, j+1} & \cdots & A_{n, j+1} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
A_{1 n} & A_{2 n} & \cdots & A_{i-1, n} & A_{i+1, n} & \cdots & A_{n n}
\end{array}\right) .
$$

Now, for each $j \in\{1,2, \cdots, n\}$, construct an $n \times n$ matrix B_{j} over R as follows. The entries of j-th row and j-th column of B_{j} are all zero and the remaining entries of B_{j} are from $\operatorname{adj}\left(\tilde{A}_{i, j}\right)$. More precisely,

$$
B_{j}=\left\{\begin{array}{ccccccc}
A_{11} & \cdots & A_{i-1,1} & 0 & A_{i+1,1} & \cdots & A_{n 1} \\
A_{12} & \cdots & A_{i-1,2} & 0 & A_{i+1,2} & \cdots & A_{n 2} \\
\vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
A_{1, j-1} & \cdots & A_{i-1, j-1} & 0 & A_{i+1, j-1} & \cdots & A_{n, j-1} \\
0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
A_{1, j+1} & \cdots & A_{i-1, j+1} & 0 & A_{i+1, j+1} & \cdots & A_{n, j+1} \\
\vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
A_{1 n} & \cdots & A_{i-1, n} & 0 & A_{i+1, n} & \cdots & A_{n n}
\end{array}\right) \text { if } j=i
$$

where

$$
s \begin{cases}=j & \text { if } j<i \\ \geq i+2 & \text { if } j>i\end{cases}
$$

Then we have the following result.

Lemma 2.2. Let R be a commutative ring. Let $A \in M_{n}(R)$. For each $j \in\{1,2, \cdots, n\}$, let B_{j} be constructed as above. If $\operatorname{adj}(A)=0$, then for each $j \in\{1,2, \cdots, n\}, A B_{j}=0$.

If $A \in M_{2}(R)$ and $\operatorname{adj} A=0$, then $A=0$. Now, let $A \in M_{3}(R)$. Assume that $\operatorname{adj}(A)=0$. Then for every $i, j \in\{1,2,3\}, A_{i j}=0$. Let $i, j \in\{1,2,3\}$. Then

$$
\tilde{A}_{i, j} \operatorname{adj}\left(\tilde{A}_{i, j}\right)=\operatorname{det}\left(\tilde{A}_{i j}\right) I=0
$$

since $(-1)^{i+j} \operatorname{det}\left(\tilde{A}_{i j}\right)=0$. If $\operatorname{adj}\left(\tilde{A}_{i, j}\right)=0$, then $\tilde{A}_{i, j}=0$ since $\tilde{A}_{i, j} \in M_{2}(R)$.
If for every $i, j \in\{1,2,3\} \operatorname{adj}\left(\tilde{A}_{i, j}\right)=0$, then for every $i, j \in\{1,2,3\} \tilde{A}_{i, j}=0$ and hence $A=0$. Hence, $A \in Z\left(M_{3}(R)\right)$.

If there exist $i, j \in\{1,2,3\}$ such that $\operatorname{adj}\left(\tilde{A}_{i, j}\right) \neq 0$, then $B_{j} \neq 0$. Hence by Lemma 2.2 $A \in Z\left(M_{3}(R)\right)$. Therefore if R is a commutative ring, then

$$
\begin{aligned}
M_{3}(R)= & G L_{3}(R) \\
& \cup\left\{A \in M_{3}(R) \mid \operatorname{det} A \neq 0 \text { and } \operatorname{det} A \notin U(R)\right\} \\
& \cup Z\left(M_{3}(R)\right)
\end{aligned}
$$

More generally we proceed as follows.

Lemma 2.3. Let R be a commutative ring. Let $A \in M_{n}(R)$. If $\operatorname{det} A=0$, then $A \in Z\left(M_{n}(R)\right)$.

Proof. Let

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right) .
$$

be in $M_{n}(R)$. For each $i, j \in\{1,2, \cdots, n\}$, let $M_{i j}$ be the minor of A. Denote
elementary column operations by \rightarrow. Then

$$
A \rightarrow\left(\begin{array}{cccc}
a_{11} M_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} M_{11} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} M_{11} & a_{n 2} & \cdots & a_{n n}
\end{array}\right)
$$

$\rightarrow \cdots$

$$
\longrightarrow\left(\begin{array}{cccc}
a_{11} M_{11} & a_{12} M_{12} & \cdots & a_{1 n} M_{1 n} \\
a_{21} M_{11} & a_{22} M_{12} & \cdots & a_{2 n} M_{1 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} M_{11} & a_{n 2} M_{12} & \cdots & a_{n n} M_{1 n}
\end{array}\right)
$$

$$
\rightarrow\left(\begin{array}{cccc}
a_{11} M_{11} & \cdots & a_{1, n-1} M_{1, n-1} & a_{11} M_{11}-\cdots+(-1)^{1+n} a_{1 n} M_{1 n} \\
a_{21} M_{11} & \cdots & a_{2, n-1} M_{1, n-1} & a_{21} M_{11}-\cdots+(-1)^{2+n} a_{2 n} M_{1 n} \\
\vdots & \ddots & \vdots & \vdots \\
a_{n 1} M_{11} & \cdots & a_{n, n-1} M_{1, n-1} & a_{n 1} M_{11}-\cdots+(-1)^{n+n} a_{n n} M_{1 n}
\end{array}\right)
$$

$$
=\left(\begin{array}{cccc}
a_{11} M_{11} & \cdots & a_{1, n-1} M_{1, n-1} & \operatorname{det} A \\
a_{21} M_{11} & \cdots & a_{2, n-1} M_{1, n-1} & 0 \\
\vdots & \ddots & \vdots & \vdots \\
a_{n 1} M_{11} & \cdots & a_{n, n-1} M_{1, n-1} & 0
\end{array}\right)
$$

$$
=\left(\begin{array}{cccc}
a_{11} M_{11} & \cdots & a_{1, n-1} M_{1, n-1} & 0 \\
a_{21} M_{11} & \cdots & a_{2, n-1} M_{1, n-1} & 0 \\
\vdots & \ddots & \vdots & \vdots \\
a_{n 1} M_{11} & \cdots & a_{n, n-1} M_{1, n-1} & 0
\end{array}\right)
$$

So, there exists a non-singular matrix $P \in M_{n}(R)$ such that

$$
A P=\left(\begin{array}{cccc}
a_{11} M_{11} & \cdots & a_{1, n-1} M_{1, n-1} & 0 \\
a_{21} M_{11} & \cdots & a_{2, n-1} M_{1, n-1} & 0 \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} M_{11} & \cdots & a_{n, n-1} M_{1, n-1} & 0
\end{array}\right) .
$$

Let $E_{i j}$ be the matrix in which the only non-zero entry is a 1 in the i th row and j th column. Then

$$
\begin{aligned}
A P= & M_{11}\left(a_{11} E_{11}+a_{21} E_{21}+\cdots+a_{n 1} E_{n 1}\right) \\
& +\cdots \\
& +M_{1, n-1}\left(a_{1, n-1} E_{1, n-1}+a_{2, n-1} E_{2, n-1}+\cdots+a_{n, n-1} E_{n, n-1}\right)
\end{aligned}
$$

Multiplying both sides of this equation by $E_{n n}$, we have $A P E_{n n}=0$. Since $P E_{n n} \neq 0$, it follows that $A \in Z\left(M_{n}(R)\right)$.

If R is a commutative ring, then $U\left(M_{n}(R)\right)$ forms a group under the matrix multiplication. This group is called the general linear group of degree n over R and is denoted by $G L_{n}(R)$. Since $A \in U\left(M_{n}(R)\right)$ if and only if $\operatorname{det} A \in U(R)$, we have

$$
G L_{n}(R)=\left\{A \in M_{n}(R) \mid \operatorname{det} A \in U(R)\right\} .
$$

Theorem 2.4. Let R be a commutative ring. Then

$$
\begin{aligned}
M_{n}(R)= & G L_{n}(R) \\
& \cup\left\{A \in M_{n}(R) \mid \operatorname{det} A \neq 0 \text { and } \operatorname{det} A \notin U(R)\right\} \\
& \cup Z\left(M_{n}(R)\right)
\end{aligned}
$$

Proof. Let $A \in M_{n}(R)$. Then either $\operatorname{det} A \in U(R)$ or $\operatorname{det} A \notin U(R)$. If $\operatorname{det} A \in U(R)$, then $A \in G L_{n}(R)$. Assume that $\operatorname{det} A \notin U(R)$. If $\operatorname{det} A \neq 0$, then $A \in\left\{A \in M_{n}(R) \mid \operatorname{det} A \neq 0\right.$ and $\left.\operatorname{det} A \notin U(R)\right\}$. If $\operatorname{det} A=0$, then by Lemma 2.3 $A \in Z\left(M_{n}(R)\right)$.

3. The Total Rings of Fractions of Matrix Rings

Lemma 3.1. If R is a ring, then

$$
U(R) \cap Z(R)=\emptyset .
$$

Proof. Suppose that $U(R) \cap Z(R) \neq \emptyset$. Take an element $a \in U(R) \cap Z(R)$. Then $a \in U(R)$, so there exists an element $b \in R$ such that $a b=1, b a=1$. $a \in Z(R)$, so there exists a non-zero element $c \in R$ such that $a c=0$. Then

$$
c=1 c=(b a) c=b(a c)=b 0=0 .
$$

This contradiction shows that $U(R) \cap Z(R)=\emptyset$.

Definition. Let R be a ring (not necessarily commutative). A multiplicatively closed subset S of R is said to be saturated if whenever $x y \in S$, where x, $y \in R$, then $x \in S$ and $y \in S$.

Note that this definition in non-commutative case coincides completely with that in commutative case.

Theorem 3.2. Let R be a unique factorization domain and let

$$
S=U(R) \cup\{a \in R \mid a \text { is a product of principal primes of } R\}
$$

Then
(1) S is a saturated multiplicatively closed set in R.
(2) $M_{n}(R)=\left\{A \in M_{n}(R) \mid \operatorname{det} A \in S\right\} \cup Z\left(M_{n}(R)\right)$.
(3) $M_{n}(R)_{S}=U\left(M_{n}(R)_{S}\right) \dot{\cup} Z\left(M_{n}(R)_{S}\right)$.
(4) $U\left(M_{n}(R)_{S}\right)$ is a subgroup of $G L_{n}\left(R_{S}\right)$.
(5) $M_{n}(R)_{S}$ is R_{S}-isomorphic to $M_{n}\left(R_{S}\right)$.

Proof. (1) See [K74]. (2) By Theorem 2.4. (3) Let A / s be any element of $M_{n}(R)_{S}$. Assume $\operatorname{det} A \in S$. Then

$$
\begin{aligned}
& (A / s)(s \operatorname{adj} A / \operatorname{det} A))=I / 1, \\
& (s \operatorname{adj} A / \operatorname{det} A))(A / s)=I / 1
\end{aligned}
$$

So, $\left.(A / s)^{-1}=s \operatorname{adj} A / \operatorname{det} A\right) \in M_{n}(R)_{S}$. Hence $A / s \in U\left(M_{n}(R)_{S}\right)$. Or, assume $\operatorname{det} A \notin S$. Then by (2) $A \in Z\left(M_{n}(A)\right)$. Hence $A / s \in Z\left(M_{n}(A)_{S}\right)$. Therefore it follows from Lemma 3.1 that (3) holds.
(4) Define a map $\varphi: M_{n}(R)_{S} \rightarrow M_{n}\left(R_{S}\right)$ by

$$
\varphi\left(\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right) / s\right)=\left(\begin{array}{cccc}
a_{11} / s & a_{12} / s & \cdots & a_{1 n} / s \\
a_{21} / s & a_{22} / s & \cdots & a_{2 n} / s \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} / s & a_{n 2} / s & \cdots & a_{n n} / s
\end{array}\right)
$$

Then φ is a well-defined injective ring homomorphism. Hence, $U\left(M_{n}(R)_{S}\right)$ is a subgroup of $G L_{n}\left(R_{S}\right)$.
(5)

$$
\begin{aligned}
M_{n}(R)_{S} & \cong M_{n}(R) \otimes_{R} R_{S} \\
& \cong R^{n^{2}} \otimes_{R} R_{S} \\
& \cong(R \oplus R \oplus \cdots \oplus R) \otimes_{R} R_{S} \\
& \cong\left(R \otimes_{R} R_{S}\right) \oplus\left(R \otimes_{R} R_{S}\right) \oplus \cdots \oplus\left(R \otimes_{R} R_{S}\right) \\
& \cong\left(R \otimes_{R} R_{S}\right)^{n^{2}} \\
& \cong R_{S}^{n^{2}} \\
& \cong M_{n}\left(R_{S}\right)
\end{aligned}
$$

The following result comes from Theorem 2.4 and Lemma 3.1. However, we give an alternative proof.

Theorem 3.3. Let F be a field. Then $M_{n}(F)=G L_{n}(F) \dot{\cup} Z\left(M_{n}(F)\right)$.
Proof. It is clear that the result holds for $n=1$.
Let $n \geq 2$. Assume $A=0$. Then $A I=A=0$. Hence $A \in Z\left(M_{n}(F)\right)$.
Assume $A \neq 0$. Let $E_{i j}$ be the matrix in which the only non-zero entry is a 1 in the ith row and jth column. Then by [K96, Theorem 1.20, p.65], A is equivalent to $E_{11}+E_{22}+\cdots+E_{r r}$ for some $r \in\{1,2,3, \cdots, n\}$. There exist nonsingular matrices P, Q such that

$$
\begin{equation*}
P A Q=E_{11}+E_{22}+\cdots+E_{r r} \tag{*}
\end{equation*}
$$

If $r=n$, then $P A Q=E_{11}+E_{22}+\cdots+E_{n n}=I$ and hence $\operatorname{det} A \neq 0$. Thus, $A \in G L_{n}(F)$. Assume $r<n$. Multiplying $E_{r+1,1}$ on both sides of the equation
(*), we have

$$
\begin{aligned}
P A Q E_{r+1,1} & =E_{11} E_{r+1,1}+E_{22} E_{r+1,1}+\cdots+E_{r r} E_{r+1,1} \\
& =\delta_{1, r+1} E_{11}+\delta_{2, r+1} E_{21}+\cdots+\delta_{r, r+1} E_{r 1} \\
& =0
\end{aligned}
$$

Hence $A Q E_{r+1,1}=0$ and $Q E_{r+1,1} \neq 0$. Thus $A \in Z\left(M_{n}(F)\right)$. Therefore $M_{n}(F)=G L_{n}(F) \cup Z\left(M_{n}(F)\right)$. It follows from Lemma 3.1 that

$$
M_{n}(F)=G L_{n}(F) \dot{\cup} Z\left(M_{n}(F)\right)
$$

Theorem 3.4. If F is a field, then the matrix ring $M_{n}(F)$ is its total ring of fractions.

Proof. Assume that F is a field. Then

$$
G L_{n}(F)=\left\{A \in M_{n}(F) \mid \operatorname{det}(A) \neq 0\right\}=U\left(M_{n}(F)\right) .
$$

Hence it is clear that $G_{n}(F)$ is a saturated multiplicatively closed subset of $M_{n}(F)$. Let $S_{0}=M_{n}(F) \backslash Z\left(M_{n}(F)\right)$. Then by Theorem 3.3, $S_{0}=G L_{n}(F)$ and hence S_{0} is a saturated multiplicatively closed subset of $M_{n}(F)$. Thus $M_{n}(F)_{S_{0}}$ is the total ring of fractions of $M_{n}(F)$ ([AM69, Chapter 3, Exercise 9, p.44] and [H88].) Let $i d: M_{n}(F) \rightarrow M_{n}(F)$ be the identity ring homomorphism. Since

$$
S_{0}=G L_{n}(F)=U\left(M_{n}(F)\right),
$$

we can see that $i d(A)$ is a unit in $M_{n}(F)$ for all $A \in S_{0}$. Consider the following diagram

Then by the universal mapping property (see [E95, p.60]) there exists a homomorphism $h: M_{n}(F)_{S_{0}} \rightarrow M_{n}(F)$ such that $h \circ f=\mathrm{id}$. From this equation, it follows that h is an epimorphism. Further, for any $A / B \in M_{n}(F)_{S_{0}}$,

$$
h(A / B)=h(A / I \cdot I / B)=h(f(A)) h\left(f\left(B^{-1}\right)\right)=i d(A) i d\left(B^{-1}\right)=A B^{-1}
$$

From this equation we can see that h is injective. Hence h is bijective. Thus h is an isomorphism. This shows that $M_{n}(F) \cong M_{n}(F)_{S_{0}}$. Therefore $M_{n}(F)$ is its total ring of fractions.

Let \mathbb{C} be the complex number field. Then it is clear that $M_{n}(\mathbb{C})$ is isomorphic to $M_{n}(\mathbb{C})_{G L_{n}(\mathbb{C})}$ because $G L_{n}(\mathbb{C})=U\left(M_{n}(\mathbb{C})\right)$. If we let $S_{0}=$ $M_{n}(\mathbb{C}) \backslash Z\left(M_{n}(\mathbb{C})\right)$, then it follows from Theorem 3.3 that

$$
M_{n}(\mathbb{C}) \cong M_{n}(\mathbb{C})_{S_{0}}
$$

Hence $M_{n}(\mathbb{C})$ is its total ring of fractions. In fact, the proof of Theorem 3.4 is standard.

Acknowledgements

The author would like to thank Professor Richard Green and the referees for their comments on the author's draft. They strongly suggested rewriting chapter 1 before the author submits to a journal.

References

[AM69] M. F. Atiyah and I. G. MacDonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, Mass., 1969.
[E95] D. Eisenbud, Commutative Algebra with a View toward Algebraic Geometry, Springer-Verlag New York, Inc., 1995.
[FIS03] S. H. Friedberg, A. J. Insel and L. E. Spence, Linear Algebra, Fourth Edition, Pearson Education, Inc., 2003.
[K96] B. Kolman, Elementary Linear Algebra, Sixth Edition, Prentice-Hall, Inc., 1996.
[K74] I. Kaplansky, Commutative Rings, The University of Chicago Press, Revised Edition, 1974.
[H88] J. A. Huckaba, Commutative Rings with Zero Divisors, Marcel Dekker, Inc., 1988.

Sang Cheol Lee
Department of Mathematics Education
Chonbuk National University
Chonju, Chonbuk 561-756, Korea
E-mail: scl@chonbuk.ac.kr
and

Department of Mathematics
The University of Colorado at Boulder
395 UCB
Boulder, Colorado 80309-0395, USA
E-mail: Sang.C.Lee@Colorado.EDU

[^0]: Received September 30, 2009. Accepted November 18, 2009.
 2000 Mathematics Subject Classification: 13B30, 15A33
 Key words and phrases: localizations, matrix rings, the total rings of fractions

