GENERALIZED DERIVATIONS OF BCI-ALGEBRAS

Mehmet Ali Öztürk, Yilmaz Çeven and Young Bae Jun*

Abstract

The notion of generalized derivations of a $B C I$-algebra is introduced, and some related properties are investigated. Also, the concept of a torsion free $B C I$-algebra is introduced and some properties are discussed.

1. Introduction

Several authors have studied derivations in rings and near rings after Posner [9] have given the definition of the derivation in ring theory. Bresar [2] introduced the generalized derivation in rings and then many mathematicians studied on this concept. Jun and Xin firstly discussed derivations in $B C I$-algebras [5]. As a continuation of the paper [5], in this paper, we introduce the concept of generalized derivations in $B C I$ algebras and torsion $B C I$-algebras, and investigate several properties.

2. preliminaries

A nonempty set X with a constant 0 and a binary operation denoted by juxtaposition is called a BCI-algebra if it satisfies the following conditions:
(I) $((x y)(x z))(z y)=0$,
(II) $(x(x y)) y=0$,
(III) $x x=0$,
(IV) $x y=0$ and $y x=0$ imply $x=y$

[^0]for all $x, y, z \in X$. In any $B C I$-algebra X one can define a partial ordering " $\leq "$ by putting $x \leq y$ if and only if $x y=0$. A BCI-algebra X satisfying $0 \leq x$ for all $x \in X$ is called a $B C K$-algebra. A $B C I$-algebra X has the following properties for all $x, y, z \in X$,
(1) $x 0=x$,
(2) $(x y) z=(x z) y$,
(3) $x \leq y$ implies $x z \leq y z$ and $z y \leq z x$,
(4) $(x z)(y z) \leq x y$,
(5) $x(x(x y))=x y$,
(6) $0(x y)=(0 x)(o y)$,
(7) $x 0=0$ implies $x=0$.

For a $B C I$-algebra X, the $B C K$-part of X, denoted by X_{+}, is defined to be the set of all $x \in X$ such that $0 \leq x$, and the $B C I-G$ part of X, denoted by $G(X)$, is defined to be the set of all $x \in X$ such that $0 x=x$. Note that $G(X) \cap X_{+}=\{0\}$ (see [3]). If $X_{+}=\{0\}$, then X is called a p-semisimple $B C I$-algebra. In a p-semisimple $B C I$-algebra X, the following hold:
(8) $(x z)(y z)=x y$,
(9) $0(0 x)=x$,
(10) $x(0 y)=y(0 x)$,
(11) $x y=0$ implies $x=y$,
(12) $x a=x b$ implies $a=b$,
(13) $a x=b x$ implies $a=b$,
(14) $a(a x)=x$.

Let X be a p-semisimple $B C I$-algebra. If we define an addition "+" as $x+y=x(0 y)$ for all $x, y \in X$, then $(X,+)$ is an abelian group with identity 0 and $x-y=x y$. Conversely let $(X,+)$ be an abelian group with identity 0 and let $x y=x-y$. Then X is a p-semisimple $B C I$ algebra and $x+y=x(0 y)$ for all $x, y \in X$ (see [7]). For a $B C I$-algebra X we denote $x \wedge y=y(y x)$, and $L_{p}(X)=\{a \in X \mid(\forall x \in X)(x a=0 \Rightarrow$ $x=a)\}$. We call the elements of $L_{p}(X)$ the p-atoms of X. Note that $L_{p}(X)=\{x \in X \mid 0(0 x)=x\}$ which is the p-semisimple part of X, and X is a p-semisimple $B C I$-algebra if and only if $L_{p}(X)=X$ (see [4]). It is clear that $G(X) \subset L_{p}(X)$, and $x(x a)=a$ and $a x \in L_{p}(X)$ for all $a \in L_{p}(X)$ and all $x \in X$. For more details, refer to $[1,6,8,10,11]$.

Definition 2.1. [5, Definition 3.5] Let X be a $B C I$-algebra. A leftright derivation (briefly, (l, r)-derivation) of X is defined to be a self-map d of X satisfying the identity $d(x y)=d(x) y \wedge x d(y)$ for all $x, y \in X$. If d satisfies the identity $d(x y)=x d(y) \wedge d(x) y$ for all $x, y \in X, d$ is called a right-left derivation (briefly, (r, l)-derivation) of X. Moreover if d is both an (l, r) - and (r, l)-derivation, we say that d is a derivation.

3. Generalized Derivations

Definition 3.1. Let X be a $B C I$-algebra. A mapping $D: X \rightarrow X$ is called a generalized (l, r)-derivation if there exist an (l, r)-derivation $d: X \rightarrow X$ such that $D(x y)=D(x) y \wedge x d(y)$ for all $x, y \in X$. If there exist an (r, l)-derivation $d: X \rightarrow X$ such that $D(x y)=x D(y) \wedge$ $d(x) y$ for all $x, y \in X$, the mapping $D: X \rightarrow X$ is called a generalized (r, l)-derivation. Moreover if D is both a generalized (l, r) - and (r, l) derivation, we say that D is a generalized derivation.

Example 3.2. Consider a $B C I$-algebra $X=\{0, a, b\}$ with the following Cayley table.

$$
\begin{array}{c|ccc}
& 0 & a & b \\
\hline 0 & 0 & b & a \\
a & a & 0 & b \\
b & b & a & 0
\end{array}
$$

Define a map $d: X \rightarrow X$ by $d(x)=\left\{\begin{array}{ll}b & \text { if } x=0 \\ 0 & \text { if } x=a \\ a & \text { if } x=b\end{array}\right.$. Then d is an (l, r)-derivation of X. But d is not an (r, l)-derivation of X since $d(a b) \neq$ $a d(b) \wedge d(a) b$. Now we define a map $D: X \rightarrow X$ by

$$
D(x)= \begin{cases}a & \text { if } x=0 \\ b & \text { if } x=a \\ 0 & \text { if } x=b\end{cases}
$$

It is easy to verify that D satisfies the equality $D(x y)=D(x) y \wedge x d(y)$ for all $x, y \in X$. Hence D is a generalized (l, r)-derivation of X. Also, let $D: X \rightarrow X$ satisfy $D(x y)=D(x) y$ for all $x, y \in X$. Note that X satisfies $x \wedge y=x$ for all $x, y \in X$. Hence, for every (l, r)-derivation d of
X we have $D(x y)=D(x) y=D(x) y \wedge x d(y)$ for all $x, y \in X$. Therefore D is a generalized (l, r)-derivation of X.

Example 3.3. Consider a $B C I$-algebra $X=\{0, a, b\}$ with the following Cayley table:

	0	a	b
0	0	0	b
a	a	0	b
b	b	b	0

Define a map $d: X \rightarrow X$ by $d(x)=\left\{\begin{array}{cc}0 & \text { if } x=0, a \\ b & \text { if } x=b\end{array}\right.$. Then d is a derivation of X. Now we define a map $D: X \rightarrow X$ by

$$
D(x)=\left\{\begin{array}{lc}
b & \text { if } x=0, a \\
0 & \text { if } x=b
\end{array}\right.
$$

It is easy to verify that D is a generalized derivation of X.
Proposition 3.4. Let D be a self-map of a $B C I$-algebra X. Then
(i) If D is a generalized (l, r)-derivation of X, then $D(x)=D(x) \wedge x$ for all $x \in X$.
(ii) If D is a generalized (r, l)-derivation of X, then $D(0)=0$ if and only if $D(x)=x \wedge d(x)$ for all $x \in X$ and for some (r, l)-derivation d of X.

Proof. (i) If D is a generalized (l, r)-derivation, then there exist an (l, r)-derivation d such that $D(x y)=D(x) y \wedge x d(y)$ for all $x, y \in X$. Hence we get

$$
\begin{aligned}
& D(x)=D(x 0)=D(x) 0 \wedge x d(0)=D(x) \wedge x d(0) \\
& \quad=(x d(0))((x d(0)) D(x))=(x d(0))((x D(x)) d(0)) \\
& \quad \leq x(x D(x))=D(x) \wedge x
\end{aligned}
$$

But $D(x) \wedge x \leq D(x)$ is trivial and so (i) holds.
(ii) Suppose that D is a generalized (r, l)-derivation of X. Then there exist an (r, l)-derivation d such that $D(x y)=x D(y) \wedge d(x) y$ for all $x, y \in$ X. If $D(0)=0$, then we have $D(0)=D(x 0)=x D(0) \wedge d(x) 0=x \wedge d(x)$. Conversely, if $D(x)=x \wedge d(x)$, then $D(0)=0 \wedge d(0)=d(0)(d(0) 0)=$ $d(0) d(0)=0$. This completes the proof.

Proposition 3.5. Let D be a generalized (l, r)-derivation of a $B C I$ algebra X. Then
(i) $D(0) \in L_{p}(X)$.
(ii) $\left(\forall a \in L_{p}(X)\right)\left(D(a)=D(0)+a \in L_{p}(X)\right)$.
(iii) $\left(\forall a \in L_{p}(X)\right)(\forall x \in X)(D(a x)=D(a) x)$.
(iv) $\left(\forall a \in L_{p}(X)\right)(\forall x \in X)(D(a+x)=D(a)+x)$.
(v) $\left(\forall a, b \in L_{p}(X)\right)(D(a+b)=D(a)+b=a+D(b))$.

Proof. (i) Using Proposition 3.4(i), we have $D(0)=D(0) \wedge 0=$ $0(0 D(0))$, and so $D(0) \in L_{p}(X)$.
(ii) Let $a \in L_{p}(X)$. Then it is known that $a x \in L_{p}(X)$ and $x(x a)=a$ for all $x \in X$. Hence $D(0)(0 a) \in L_{p}(X)$ since $D(0) \in L_{p}(X)$ by (i). Then, we obtain

$$
\begin{aligned}
& D(a)=D(0(0 a))=D(0)(0 a) \wedge 0 d(0 a) \\
& \quad=(0 d(0 a))((0 d(0 a))(D(0)(0 a))) \\
& \quad=(0 d(0 a))((0(D(0)(0 a))) d(0 a)) \\
& \quad=0(0(D(0)(0 a))) \\
& \quad=D(0)(0 a)=D(0)+a \in L_{p}(X)
\end{aligned}
$$

(iii) Let $a \in L_{p}(X)$ and $x \in X$. Then we have

$$
D(a x)=D(a) x \wedge a d(x)=(a d(x))((a d(x))(D(a) x))=D(a) x
$$

since $a d(x), D(a) x \in L_{p}(X)$.
(iv) Let $a \in L_{p}(X)$ and $x \in X$. Using (iii), we have

$$
D(a+x)=D(a(0 x))=D(a)(0 x)=D(a)+x
$$

(v) follows directly from (iv).

Proposition 3.6. Let D be a generalized (r, l)-derivation of a $B C I$ algebra X. Then
(i) $(\forall a \in G(X))(D(a) \in G(X))$.
(ii) $\left(\forall a \in L_{p}(X)\right)\left(D(a) \in L_{p}(X)\right)$.
(iii) $\left(\forall a \in L_{p}(X)\right)(D(a)=a D(0)=a+D(0))$.
(iv) $\left(\forall a, b \in L_{p}(X)\right)(D(a+b)=D(a)+D(b)-D(0))$.
(v) D is identity on $L_{p}(X)$ if and only if $D(0)=0$.

Proof. If D is a generalized (r, l)-derivation of X, then there exists an (r, l)-derivation d of X such that $D(x y)=x D(y) \wedge d(x) y$ for all $x, y \in X$.
Now let $a \in G(X)$. Then

$$
D(a)=D(0 a)=0 D(a) \wedge d(0) a=(d(0) a)((d(0) a)(0 D(a)))=0 D(a)
$$

and so $D(a) \in G(X)$. Hence (i) is valid. For any $a \in L_{p}(X)$ we get

$$
\begin{aligned}
D(a) & =D(0(0 a))=0 D(0 a) \wedge d(0)(0 a) \\
& =(d(0)(0 a))((d(0)(0 a))(0 D(0 a))) \\
& =0 D(0 a) \in L_{p}(X),
\end{aligned}
$$

and

$$
\begin{aligned}
D(a) & =D(0 a)=a D(0) \wedge d(a) 0=d(a)(d(a)(a D(0))) \\
& =a D(0)=a(0 D(0))=a+D(0)
\end{aligned}
$$

Therefore (ii) and (iii) are valid. Now let $a, b \in L_{p}(X)$. Then $a+b \in$ $L_{p}(X)$, and so
$D(a+b)=a+b+D(0)=a+D(0)+b+D(0)-D(0)=D(a)+D(b)-D(0)$.
Thus (iv) is true. (v) follows directly from (iii).
Definition 3.7. A $B C I$-algebra X is said to be torsion free if it satisfies:

$$
(\forall x \in X)(x+x=0 \Rightarrow x=0) .
$$

By the definition above, we know that if there exists a nonzero element x of a $B C I$-algebra X such that $x+x=0$, then X can not be torsion free. Note also that if a $B C I$-algebra X satisfies:

$$
(\exists w(\neq 0) \in X)(0 w=w),
$$

then X can not be torsion free.
Example 3.8. (1) Every $B C K$-algebra is torsion free.
(2) The $B C I$-algebra X in Example 3.2 is torsion free.
(3) Let $X=\{0,1,2,3,4,5\}$ be a set with the following Cayley table:

	0	1	2	3	4	5
0	0	0	3	2	3	2
1	1	0	5	4	3	2
2	2	2	0	3	0	3
3	3	3	2	0	2	0
4	4	2	1	5	0	3
5	5	3	4	1	2	0

Then X is a torsion free $B C I$-algebra.
(4) A $B C I$-algebra $X=\{0,1,2,3\}$ together with the following Cayley table:

	0	1	2	3
0	0	0	3	3
1	1	0	3	2
2	2	3	0	1
3	3	3	0	0

is not torsion free because $3(03)=33=0$.
Proposition 3.9. Let X be a torsion free $B C I$-algebra and D a generalized derivation. If $D^{2}=0$ on $L_{p}(X)$, then $D=0$ on $L_{p}(X)$.

Proof. Assume that $D^{2}=0$ on $L_{p}(X)$. Let $x \in L_{p}(X)$. Then $x+x \in$ $L_{p}(X)$, and so

$$
\begin{aligned}
0 & =D^{2}(x+x)=D(D(x+x))=D(0)+D(x+x) \\
& =D(0)+D(x)+D(x)-D(0)=D(x)+D(x)
\end{aligned}
$$

Since X is torsion free, it follows that $D(x)=0$ for all $x \in L_{p}(X)$ so that $D=0$ on $L_{p}(X)$.

Proposition 3.10. Let X be a torsion free $B C I$-algebra and let D_{1} and D_{2} be two generalized derivations. If $D_{1} D_{2}=0$ on $L_{p}(X)$, then $D_{2}=0$ on $L_{p}(X)$.

Proof. Let $x \in L_{p}(X)$. Then $x+x \in L_{p}(X)$, and thus

$$
\begin{aligned}
0 & =\left(D_{1} D_{2}\right)(x+x)=D_{1}\left(D_{2}(x+x)\right) \\
& =D_{1}(0)+D_{2}(x+x) \\
& =D_{1}(0)+D_{2}(x)+D_{2}(x)-D_{2}(0) \\
& =D_{1}(0)-D_{2}(0)+D_{2}(x)+D_{2}(x) \\
& =D_{1}(0) D_{2}(0)+D_{2}(x)+D_{2}(x) \\
& =D_{1}(0)\left(0 D_{2}(0)\right)+D_{2}(x)+D_{2}(x) \\
& =D_{1}(0)+D_{2}(0)+D_{2}(x)+D_{2}(x) \\
& =D_{1}\left(D_{2}(0)\right)+D_{2}(x)+D_{2}(x) \\
& =\left(D_{1} D_{2}\right)(0)+D_{2}(x)+D_{2}(x) \\
& =D_{2}(x)+D_{2}(x)
\end{aligned}
$$

Since X is torsion free, we have $D_{2}(x)=0$ for all $x \in L_{p}(X)$. Hence $D_{2}=0$ on $L_{p}(X)$.

Definition 3.11. An (l,r)-derivation (resp., (r, l)-derivation) d of a $B C I$-algebra X is said to be regular if $d(0)=0$.

Example 3.12. The (l, r)-derivation D in Example 3.2 is regular, but the derivation d in Example 3.2 is not regular.

Definition 3.13. A mapping $D: X \rightarrow X$ is called a regular generalized (l, r) (resp., (r, l))-derivation if there exists a regular (l, r) (resp., (r, l))-derivation d of X such that $D(x y)=D(x) y \wedge x d(y)$ (resp., $D(x y)=$ $x D(y) \wedge d(x) y)$ for all $x, y \in X$.

Example 3.14. Let $X=\{0,1,2,3,4,5\}$ be a $B C I$-algebra described in Example 3.8(3). We give here the \wedge-operation on X as follows:

\wedge	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	0	0	1	1
2	2	2	2	2	2	2
3	3	3	3	3	3	3
4	2	4	2	2	4	4
5	3	5	3	3	5	5

Then a map $d: X \rightarrow X$ given by

$$
d(x):= \begin{cases}0 & \text { if } x=0,1 \\ 2 & \text { if } x=2,4 \\ 3 & \text { if } x=3,5\end{cases}
$$

is a regular (l, r)-derivation of X. Define a self map D of X by $D(0)=0$, $D(2)=2, D(3)=3$, and ordered triple $(D(1), D(4), D(5))$ is $(5,1,4)$, $(4,5,1),(3,0,2),(2,3,0),(1,4,5)$, or $(0,2,3)$. Then D is a regular generalized (l, r)-derivation of X.

If D is a regular generalized (r, l)-derivation of a $B C I$-algebra X, then there exists a regular (r, l)-derivation d of X such that

$$
D(0)=D(00)=0 D(0) \wedge d(0) 0=0 D(0) \wedge 0=0(0(0 D(0)))=0 D(0)
$$

Therefore we have the following proposition.
Proposition 3.15. If D is a regular generalized (r, l)-derivation of a $B C I$-algebra X, then $D(0)=0 D(0)$.

References

[1] M. Aslam, A. B. Thaheem, A note on p-semisimple BCI-algebras, Math. Japon. $\mathbf{3 6 (1)}$, (1991), 39-45.
[2] M. Bresar, On the distance of the composition of the two derivations to the generalized derivations, Glasgow Math. J. 33(1), (1991), 89-93.
[3] Y. B. Jun, E. H. Roh, On the BCI-G part of BCI-algebras, Math. Japon. 38(4), (1993), 697-702.
[4] Y. B. Jun, X. L. Xin, E. H. Roh, The role of atoms in BCI-algebras, Soochow J. Math. 30 (2004), no. 4, 491-506.
[5] Y. B. Jun, X. L. Xin, On derivation of BCI-algebras, Inform. Sci. 159 (2004), 167-176.
[6] T. D. Lei, C. C. Xi, p-radical in BCI-algebras, Math. Japon. 30(4) (1985), 511-517.
[7] D. J. Meng, BCI-algebras and abelian groups, Math. Japon. 32(5) (1987), 693696.
[8] J. Meng, Y. B. Jun, E. H. Roh, BCI-algebras of order 6, Math. Japon. 47(1) (1998), 33-43.
[9] E. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 10931100.
[10] X. L. Xin, E. H. Roh, J. C. Li, Some results on the BCI-G part of BCI-algebras, Far East J. Math. Sci. Special volume (Part III) (1997) 363-370.
[11] Q. Zhang, Some other characterizations of p-semisimple BCI-algebras, Math. Japon. 36(5) (1991) 815-817.

Mehmet Ali Öztürk

Department of Mathematics, Faculty of Arts and Sciences
Adiyaman University, 02040 Adiyaman, Turkey
e-mail: mehaliozturk@gmail.com
Yilmaz Çeven
Department of Mathematics, Faculty of Sciences
Sulleyman Demirel University, Isparta, Turkey
e-mail: yceven@fef.sdu.edu.tr
Young Bae Jun
Department of Mathematics Education (and RINS)
Gyeongsang National University
Chinju 660-701, Korea
e-mail: skywine@gmail.com

[^0]: Received September 17, 2009. Accepted December 11, 2009. 2000 Mathematics Subject Classification: 06F35, 03G25.
 Key words and phrases: p-semisimple $B C I$-algebra, p-atom, (generalized) derivation, torsion free $B C I$-algebra.
 *Corresponding author. Tel.: +82557515674; fax: +82557515668.

