Honam Mathematical J. 31 (2009), No. 4, pp. 601-609

GENERALIZED DERIVATIONS OF BCI-ALGEBRAS

MEHMET ALI ÖZTÜRK, YILMAZ ÇEVEN AND YOUNG BAE JUN*

Abstract. The notion of generalized derivations of a BCI-algebra is introduced, and some related properties are investigated. Also, the concept of a torsion free BCI-algebra is introduced and some properties are discussed.

1. Introduction

Several authors have studied derivations in rings and near rings after Posner [9] have given the definition of the derivation in ring theory. Bresar [2] introduced the generalized derivation in rings and then many mathematicians studied on this concept. Jun and Xin firstly discussed derivations in BCI-algebras [5]. As a continuation of the paper [5], in this paper, we introduce the concept of generalized derivations in BCIalgebras and torsion BCI-algebras, and investigate several properties.

2. preliminaries

A nonempty set X with a constant 0 and a binary operation denoted by juxtaposition is called a BCI-algebra if it satisfies the following conditions:

(I) ((xy)(xz))(zy) = 0, (II) (x(xy))y = 0, (III) xx = 0, (IV) xy = 0 and yx = 0 imply x = y

Received September 17, 2009. Accepted December 11, 2009.

2000 Mathematics Subject Classification: 06F35, 03G25.

Key words and phrases: p-semisimple BCI-algebra, p-atom, (generalized) derivation, torsion free BCI-algebra.

^{*}Corresponding author. Tel.: +82 55 751 5674; fax: +82 55 751 5668.

for all $x, y, z \in X$. In any *BCI*-algebra X one can define a partial ordering " \leq " by putting $x \leq y$ if and only if xy = 0. A *BCI*-algebra X satisfying $0 \leq x$ for all $x \in X$ is called a *BCK*-algebra. A *BCI*-algebra X has the following properties for all $x, y, z \in X$,

- (1) x0 = x,
- (2) (xy)z = (xz)y,
- (3) $x \leq y$ implies $xz \leq yz$ and $zy \leq zx$,
- $(4) (xz)(yz) \le xy,$
- $(5) \ x(x(xy)) = xy,$
- (6) 0(xy) = (0x)(oy),
- (7) x0 = 0 implies x = 0.

For a *BCI*-algebra X, the *BCK*-part of X, denoted by X_+ , is defined to be the set of all $x \in X$ such that $0 \leq x$, and the *BCI*-G part of X, denoted by G(X), is defined to be the set of all $x \in X$ such that 0x = x. Note that $G(X) \cap X_+ = \{0\}$ (see [3]). If $X_+ = \{0\}$, then X is called a *p*-semisimple *BCI*-algebra. In a *p*-semisimple *BCI*-algebra X, the following hold:

- (8) (xz)(yz) = xy,
- (9) 0(0x) = x,
- (10) x(0y) = y(0x),
- (11) xy = 0 implies x = y,
- (12) xa = xb implies a = b,
- (13) ax = bx implies a = b,
- (14) a(ax) = x.

Let X be a p-semisimple BCI-algebra. If we define an addition "+" as x + y = x(0y) for all $x, y \in X$, then (X, +) is an abelian group with identity 0 and x - y = xy. Conversely let (X, +) be an abelian group with identity 0 and let xy = x - y. Then X is a p-semisimple BCI-algebra and x + y = x(0y) for all $x, y \in X$ (see [7]). For a BCI-algebra X we denote $x \wedge y = y(yx)$, and $L_p(X) = \{a \in X \mid (\forall x \in X)(xa = 0 \Rightarrow x = a)\}$. We call the elements of $L_p(X)$ the p-atoms of X. Note that $L_p(X) = \{x \in X \mid 0(0x) = x\}$ which is the p-semisimple part of X, and X is a p-semisimple BCI-algebra if and only if $L_p(X) = X$ (see [4]). It is clear that $G(X) \subset L_p(X)$, and x(xa) = a and $ax \in L_p(X)$ for all $a \in L_p(X)$ and all $x \in X$. For more details, refer to [1, 6, 8, 10, 11].

Definition 2.1. [5, Definition 3.5] Let X be a *BCI*-algebra. A *left-right derivation* (briefly, (l, r)-*derivation*) of X is defined to be a self-map d of X satisfying the identity $d(xy) = d(x)y \wedge xd(y)$ for all $x, y \in X$. If d satisfies the identity $d(xy) = xd(y) \wedge d(x)y$ for all $x, y \in X$, d is called a *right-left derivation* (briefly, (r, l)-*derivation*) of X. Moreover if d is both an (l, r)- and (r, l)-derivation, we say that d is a *derivation*.

3. Generalized Derivations

Definition 3.1. Let X be a *BCI*-algebra. A mapping $D: X \to X$ is called a *generalized* (l, r)-derivation if there exist an (l, r)-derivation $d: X \to X$ such that $D(xy) = D(x)y \wedge xd(y)$ for all $x, y \in X$. If there exist an (r, l)-derivation $d: X \to X$ such that $D(xy) = xD(y) \wedge$ d(x)y for all $x, y \in X$, the mapping $D: X \to X$ is called a *generalized* (r, l)-derivation. Moreover if D is both a generalized (l, r)- and (r, l)derivation, we say that D is a *generalized derivation*.

Example 3.2. Consider a *BCI*-algebra $X = \{0, a, b\}$ with the following Cayley table.

Define a map d : $X \to X$ by $d(x) = \begin{cases} b & \text{if } x = 0 \\ 0 & \text{if } x = a \\ a & \text{if } x = b \end{cases}$. Then d is an

(l, r)-derivation of X. But d is not an (r, l)-derivation of X since $d(ab) \neq ad(b) \wedge d(a)b$. Now we define a map $D: X \to X$ by

$$D(x) = \begin{cases} a & \text{if } x = 0, \\ b & \text{if } x = a, \\ 0 & \text{if } x = b. \end{cases}$$

It is easy to verify that D satisfies the equality $D(xy) = D(x)y \wedge xd(y)$ for all $x, y \in X$. Hence D is a generalized (l, r)-derivation of X. Also, let $D: X \to X$ satisfy D(xy) = D(x)y for all $x, y \in X$. Note that Xsatisfies $x \wedge y = x$ for all $x, y \in X$. Hence, for every (l, r)-derivation d of X we have $D(xy) = D(x)y = D(x)y \wedge xd(y)$ for all $x, y \in X$. Therefore D is a generalized (l, r)-derivation of X.

Example 3.3. Consider a *BCI*-algebra $X = \{0, a, b\}$ with the following Cayley table:

Define a map $d : X \to X$ by $d(x) = \begin{cases} 0 & \text{if } x = 0, a \\ b & \text{if } x = b \end{cases}$. Then d is a derivation of X. Now we define a map $D : X \to X$ by

$$D(x) = \begin{cases} b & \text{if } x = 0, a \\ 0 & \text{if } x = b. \end{cases}$$

It is easy to verify that D is a generalized derivation of X.

Proposition 3.4. Let D be a self-map of a BCI-algebra X. Then

- (i) If D is a generalized (l, r)-derivation of X, then $D(x) = D(x) \wedge x$ for all $x \in X$.
- (ii) If D is a generalized (r, l)-derivation of X, then D(0) = 0 if and only if D(x) = x ∧ d(x) for all x ∈ X and for some (r, l)-derivation d of X.

Proof. (i) If D is a generalized (l, r)-derivation, then there exist an (l, r)-derivation d such that $D(xy) = D(x)y \wedge xd(y)$ for all $x, y \in X$. Hence we get

$$D(x) = D(x0) = D(x)0 \land xd(0) = D(x) \land xd(0)$$

= $(xd(0))((xd(0))D(x)) = (xd(0))((xD(x))d(0))$
 $\leq x(xD(x)) = D(x) \land x.$

But $D(x) \wedge x \leq D(x)$ is trivial and so (i) holds.

(ii) Suppose that D is a generalized (r, l)-derivation of X. Then there exist an (r, l)-derivation d such that $D(xy) = xD(y) \wedge d(x)y$ for all $x, y \in X$. If D(0) = 0, then we have $D(0) = D(x0) = xD(0) \wedge d(x)0 = x \wedge d(x)$. Conversely, if $D(x) = x \wedge d(x)$, then $D(0) = 0 \wedge d(0) = d(0)(d(0)0) = d(0)d(0) = 0$. This completes the proof.

Proposition 3.5. Let D be a generalized (l, r)-derivation of a BCIalgebra X. Then

Generalized Derivations of BCI-algebras

(i) $D(0) \in L_p(X)$.

(ii) $(\forall a \in L_p(X)) (D(a) = D(0) + a \in L_p(X)).$

- (iii) $(\forall a \in L_p(X)) \ (\forall x \in X) \ (D(ax) = D(a)x).$
- (iv) $(\forall a \in L_p(X)) \ (\forall x \in X) \ (D(a+x) = D(a) + x).$
- (v) $(\forall a, b \in L_p(X))$ (D(a+b) = D(a) + b = a + D(b)).

Proof. (i) Using Proposition 3.4(i), we have $D(0) = D(0) \wedge 0 = 0(0D(0))$, and so $D(0) \in L_p(X)$.

(ii) Let $a \in L_p(X)$. Then it is known that $ax \in L_p(X)$ and x(xa) = a for all $x \in X$. Hence $D(0)(0a) \in L_p(X)$ since $D(0) \in L_p(X)$ by (i). Then, we obtain

$$D(a) = D(0(0a)) = D(0)(0a) \land 0d(0a)$$

= $(0d(0a))((0d(0a))(D(0)(0a)))$
= $(0d(0a))((0(D(0)(0a)))d(0a))$
= $0(0(D(0)(0a)))$
= $D(0)(0a) = D(0) + a \in L_p(X).$

(iii) Let $a \in L_p(X)$ and $x \in X$. Then we have

$$D(ax) = D(a)x \wedge ad(x) = (ad(x))((ad(x))(D(a)x)) = D(a)x$$

since ad(x), $D(a)x \in L_p(X)$.

(iv) Let $a \in L_p(X)$ and $x \in X$. Using (iii), we have

$$D(a+x) = D(a(0x)) = D(a)(0x) = D(a) + x.$$

(v) follows directly from (iv).

Proposition 3.6. Let D be a generalized (r, l)-derivation of a BCIalgebra X. Then

- (i) $(\forall a \in G(X)) (D(a) \in G(X)).$
- (ii) $(\forall a \in L_p(X)) \ (D(a) \in L_p(X)).$
- (iii) $(\forall a \in L_p(X)) (D(a) = aD(0) = a + D(0)).$
- (iv) $(\forall a, b \in L_p(X))$ (D(a+b) = D(a) + D(b) D(0)).
- (v) D is identity on $L_p(X)$ if and only if D(0) = 0.

Proof. If D is a generalized (r, l)-derivation of X, then there exists an (r, l)-derivation d of X such that $D(xy) = xD(y) \wedge d(x)y$ for all $x, y \in X$. Now let $a \in G(X)$. Then

$$D(a) = D(0a) = 0D(a) \land d(0)a = (d(0)a)((d(0)a)(0D(a))) = 0D(a),$$

605

and so $D(a) \in G(X)$. Hence (i) is valid. For any $a \in L_p(X)$ we get

$$D(a) = D(0(0a)) = 0D(0a) \wedge d(0)(0a)$$

= $(d(0)(0a))((d(0)(0a))(0D(0a)))$
= $0D(0a) \in L_p(X),$

and

$$D(a) = D(0a) = aD(0) \land d(a)0 = d(a)(d(a)(aD(0)))$$

= $aD(0) = a(0D(0)) = a + D(0).$

Therefore (ii) and (iii) are valid. Now let $a, b \in L_p(X)$. Then $a + b \in L_p(X)$, and so

$$D(a+b) = a+b+D(0) = a+D(0)+b+D(0)-D(0) = D(a)+D(b)-D(0).$$

Thus (iv) is true. (v) follows directly from (iii).

Definition 3.7. A *BCI*-algebra X is said to be *torsion free* if it satisfies:

$$(\forall x \in X) (x + x = 0 \Rightarrow x = 0).$$

By the definition above, we know that if there exists a nonzero element x of a *BCI*-algebra X such that x + x = 0, then X can not be torsion free. Note also that if a *BCI*-algebra X satisfies:

$$(\exists w \neq 0) \in X) (0w = w),$$

then X can not be torsion free.

Example 3.8. (1) Every *BCK*-algebra is torsion free.

(2) The BCI-algebra X in Example 3.2 is torsion free.

(3) Let $X = \{0, 1, 2, 3, 4, 5\}$ be a set with the following Cayley table:

	0	1	2	3	4	5
0	0	0	3	2	3	2
1	1	0	5	4	3	2
2	2	2	0	3	0	3
3	3	3	2	0	2	0
4	4	2	1	5	0	3
5	5	3	4	1	2	0

Then X is a torsion free BCI-algebra.

(4) A *BCI*-algebra $X = \{0, 1, 2, 3\}$ together with the following Cayley table:

	0	1	2	3
0	0	0	3	3
1	1	0	3	2
2	2	3	0	1
3	3	3	0	0

is not torsion free because 3(03) = 33 = 0.

Proposition 3.9. Let X be a torsion free BCI-algebra and D a generalized derivation. If $D^2 = 0$ on $L_p(X)$, then D = 0 on $L_p(X)$.

Proof. Assume that $D^2 = 0$ on $L_p(X)$. Let $x \in L_p(X)$. Then $x + x \in L_p(X)$, and so

$$0 = D^{2}(x + x) = D(D(x + x)) = D(0) + D(x + x)$$

= D(0) + D(x) + D(x) - D(0) = D(x) + D(x).

Since X is torsion free, it follows that D(x) = 0 for all $x \in L_p(X)$ so that D = 0 on $L_p(X)$.

Proposition 3.10. Let X be a torsion free BCI-algebra and let D_1 and D_2 be two generalized derivations. If $D_1D_2 = 0$ on $L_p(X)$, then $D_2 = 0$ on $L_p(X)$.

Proof. Let $x \in L_p(X)$. Then $x + x \in L_p(X)$, and thus

Since X is torsion free, we have $D_2(x) = 0$ for all $x \in L_p(X)$. Hence $D_2 = 0$ on $L_p(X)$.

Definition 3.11. An (l, r)-derivation (resp., (r, l)-derivation) d of a *BCI*-algebra X is said to be *regular* if d(0) = 0.

Example 3.12. The (l, r)-derivation D in Example 3.2 is regular, but the derivation d in Example 3.2 is not regular.

Definition 3.13. A mapping $D: X \to X$ is called a *regular gener*alized (l, r) (resp., (r, l))-derivation if there exists a regular (l, r) (resp., (r, l))-derivation d of X such that $D(xy) = D(x)y \wedge xd(y)$ (resp., $D(xy) = xD(y) \wedge d(x)y$) for all $x, y \in X$.

Example 3.14. Let $X = \{0, 1, 2, 3, 4, 5\}$ be a *BCI*-algebra described in Example 3.8(3). We give here the \wedge -operation on X as follows:

\wedge	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	0	0	1	1
2	2	2	2	2	2	2
3	3	3	3	3	3	3
4	2	4	2	2	4	4
5	3	5	3	3	5	5

Then a map $d: X \to X$ given by

$$d(x) := \begin{cases} 0 & \text{if } x = 0, 1, \\ 2 & \text{if } x = 2, 4, \\ 3 & \text{if } x = 3, 5 \end{cases}$$

is a regular (l, r)-derivation of X. Define a self map D of X by D(0) = 0, D(2) = 2, D(3) = 3, and ordered triple (D(1), D(4), D(5)) is (5, 1, 4), (4, 5, 1), (3, 0, 2), (2, 3, 0), (1, 4, 5), or (0, 2, 3). Then D is a regular generalized (l, r)-derivation of X.

If D is a regular generalized (r, l)-derivation of a BCI-algebra X, then there exists a regular (r, l)-derivation d of X such that

$$D(0) = D(00) = 0D(0) \land d(0)0 = 0D(0) \land 0 = 0(0(0D(0))) = 0D(0).$$

Therefore we have the following proposition.

Proposition 3.15. If D is a regular generalized (r, l)-derivation of a BCI-algebra X, then D(0) = 0D(0).

References

- M. Aslam, A. B. Thaheem, A note on p-semisimple BCI-algebras, Math. Japon. 36(1), (1991), 39–45.
- [2] M. Bresar, On the distance of the composition of the two derivations to the generalized derivations, Glasgow Math. J. 33(1), (1991), 89–93.
- [3] Y. B. Jun, E. H. Roh, On the BCI-G part of BCI-algebras, Math. Japon. 38(4), (1993), 697–702.
- [4] Y. B. Jun, X. L. Xin, E. H. Roh, The role of atoms in BCI-algebras, Soochow J. Math. **30** (2004), no. 4, 491–506.
- [5] Y. B. Jun, X. L. Xin, On derivation of BCI-algebras, Inform. Sci. 159 (2004), 167–176.
- [6] T. D. Lei, C. C. Xi, p-radical in BCI-algebras, Math. Japon. 30(4) (1985), 511–517.
- [7] D. J. Meng, BCI-algebras and abelian groups, Math. Japon. 32(5) (1987), 693–696.
- [8] J. Meng, Y. B. Jun, E. H. Roh, BCI-algebras of order 6, Math. Japon. 47(1) (1998), 33–43.
- [9] E. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093– 1100.
- [10] X. L. Xin, E. H. Roh, J. C. Li, Some results on the BCI-G part of BCI-algebras, Far East J. Math. Sci. Special volume (Part III) (1997) 363–370.
- [11] Q. Zhang, Some other characterizations of p-semisimple BCI-algebras, Math. Japon. 36(5) (1991) 815–817.

Mehmet Ali Öztürk

Department of Mathematics, Faculty of Arts and Sciences Adiyaman University, 02040 Adiyaman, Turkey e-mail: mehaliozturk@gmail.com

Yilmaz Çeven

Department of Mathematics, Faculty of Sciences Sulleyman Demirel University, Isparta, Turkey e-mail: yceven@fef.sdu.edu.tr

Young Bae Jun Department of Mathematics Education (and RINS) Gyeongsang National University Chinju 660-701, Korea e-mail: skywine@gmail.com