ON THE ORDERS IN A QUATERNION ALGEBRA OVER A DYADIC LOCAL FIELD

Sungtae Jun and Insuk Kim

Abstract

The orders in a quaternion algebra play a central role of the theory of Hecke operators. In this paper, we study the arithmetic properties of optimal embeddings of orders in a quaternion algebra over a dyadic local field.

1. Introduction

A quaternion algebra over a field k means a semi simple algebra of dimension 4 over k. In a quaternion algebra, there are three kinds of primitive orders in quaternion algebras over a local field. That is, an order Λ of a quaternion algebra A over a local field k is called primitive if it satisfies one of the following conditions. If A is a division algebra, Λ contains the full ring of integers of a quadratic extension field of k. If A is isomorphic to $\operatorname{Mat}_{2 \times 2}(k)$, then Λ contains a subset which is isomorphic either to $\mathcal{O} \oplus \mathcal{O}$ where \mathcal{O} is the ring of integers in k, or to the full ring of integers in a quadratic extension field of k. The arithmetic properties of first two types of orders were studied by Hijikata, Pizer and Shemanske in [5] and [10] and they solved so called "Basis Problem". More generally, Brezezinski studied bass orders in a quaternion algebra which include the remaining type of orders [1]. In this paper, we compute the number of optimal embeddings of primitive orders containing the full ring of integers in a quadratic extension field of a dyadic local field k with a different method used in [1]. Finally as an application, we constructed theta series associated with these primitive orders, which are modular forms of weight 2 on a certain congruence group. Unlike the theta series

[^0]constructed in [5], characters were not used in this case in defining theta series.

2. Orders

2.1. In this section, we summarize the arithmetic theory of a dyadic local field. Throughout this paper, we assume that k is a dyadic local field. Let \mathcal{O} denote the ring of integers in k, P, the maximal ideal of \mathcal{O}. We denote the discriminant of α by $\Delta(\alpha)$. Let L be a quadratic extension field of k. If Γ is an \mathcal{O} algebra of rank 2 contained in L, then $\Gamma=\mathcal{O}+\mathcal{O} x$ and the discriminant of Γ is defined by

$$
\Delta(\Gamma)=\Delta(x) \quad \bmod U^{2}
$$

where U is the set of all units in \mathcal{O}.
2.2. Let A be a quaternion algebra which is split over a dyadic local field k. That is $A=M_{2}(k)$. Let L be a quadratic extension field of k. In [8], we have proved that $\left\{\left.\left(\begin{array}{cc}\alpha & \bar{\beta} \\ \beta & \bar{\alpha}\end{array}\right) \right\rvert\, \alpha, \beta \in L\right\}$ is a quaternion algebra over k and $\left\{\left.\left(\begin{array}{cc}\alpha & \bar{\beta} \\ \beta & \bar{\alpha}\end{array}\right) \right\rvert\, \alpha, \beta \in L\right\}=L+\xi L$, where $\xi=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$. Then $\xi \alpha=\bar{\alpha} \xi, \xi^{2}=1$ and $\bar{\xi}=-\xi$. Hence, we can define the norm of an element in A as its determinant.

Definition 1. Let L be a quadratic extension of k.

$$
t=t(L)=\operatorname{ord}_{k}(\Delta(L))-1 .
$$

Remark. If L is an unramified extension field of k, then $t(L)=-1$. On the other hand, if L is a ramified extension field of a field k, then $t(L) \geq 0$. Furthermore, if k is a dyadic local field, then $0<t \leq 2 e$ by 2.3 and 1.3 in [6]. It is easy to see that $\operatorname{ord}_{L}(x-\bar{x}) \geq \operatorname{ord}_{k}(\Delta(L))=t+1$ for $x \in \mathcal{O}_{L}$. Let P_{L} be the prime ideal of \mathcal{O}_{L}, the ring of integers in L.

Proposition 2.1. Let the notation be as above. Let R be an order of A and L a quadratic extension field in A. Then R contains \mathcal{O}_{L} if and only if

$$
R=\left\{\begin{array}{l}
\mathcal{O}_{L}+\xi P_{L}^{n} \quad \text { if } L \text { is an unramified extension field, } \\
\mathcal{O}_{L}+(1+\xi) P_{L}^{n-t-1} \quad \text { if } L \text { is a ramified extension field }, \\
\text { or } \quad \mathcal{O}_{L}+(1-\xi) P_{L}^{n-t-1}
\end{array}\right.
$$

for some nonnegative integer n and $t=t(L)$.

Proof. See Proposition 3.1 in [8].
Remark. If L is unramified, then the index n of $\mathcal{O}_{L}+\xi P_{L}^{n}$ is always even. On the other hand, if L is ramified and $t(L)<2 e$, then $(1+$ छ) $P_{L}^{-t-1}=(1-\xi) P_{L}^{-t-1}$. That is $\mathcal{O}_{L}+(1+\xi) P_{L}^{-t-1}=\mathcal{O}_{L}+(1-$ छ) P_{L}^{-t-1}. If L is ramified and $t(L)=2 e$, then there are two different maximal orders $\mathcal{O}_{L}+(1+\xi) P_{L}^{-t-1}$ and $\mathcal{O}_{L}+(1-\xi) P_{L}^{-t-1}$. However, $\mathcal{O}_{L}+(1+\xi) P_{L}^{n-t-1}=\mathcal{O}_{L}+(1-\xi) P_{L}^{n-t-1}$ for $n \geq 1$.

Definition 2. Let the notation be as above. We define an order of A as follows.
a. If L is unramified,

$$
R_{2 \nu}(L)=\mathcal{O}_{L}+\xi P_{L}^{\nu}
$$

b. If L is ramified,

$$
R_{\nu}(L)=\mathcal{O}_{L}+(1+\xi) P_{L}^{\nu-t-1} \text { or } \overline{R_{0}(L)}=\mathcal{O}_{L}+(1-\xi) P_{L}^{-t-1}
$$

for some nonnegative integer ν.
Corollary 2.2. Let the notations be as above. Then

1. if L is unramified, $\cdots \subset R_{2 n}(L) \subset R_{2 n-2}(L) \cdots \subset R_{0}(L)$,
2. if L is ramified and $t(L)=2 e, \cdots \subset R_{n}(L) \subset R_{n-1}(L) \cdots \subset$ $R_{1}(L) \subset\left\{\begin{array}{l}\overline{R_{0}(L)} \\ R_{0}(L),\end{array}\right.$
3. if L is ramified and $0<t(L)<2 e, \cdots \subset R_{n}(L) \subset R_{n-1}(L) \cdots \subset$ $R_{1}(L) \subset R_{0}(L)$.
Proof. This is immediate from Definition2 and the remark above.
Definition 3. Let R be an order in A. The Eichler invariant $e(R)$ of R is defined as follows.

$$
e(R)= \begin{cases}1 & \text { if } R / J(R) \simeq \mathcal{O} \oplus \mathcal{O} \\ 0 & \text { if } R / J(R) \simeq \mathcal{O} \\ -1 & \text { if } R / J(R) \text { is a quadratic extension of } \mathcal{O}\end{cases}
$$

where $j(R)$ is the jacobson radical of R.
Remark. The primitive orders which we are dealing with are classified into either $e(R)=1, e(R)=0$ or $e(R)=-1$. That is if L is unramified, then $e(R)=-1$. If L is ramified, $R_{1}(L)$ with $t(L)=2 e$ is of $e(R)=1$. For the others , $e(R)=0$.

The followings are crucial in computing the number of optimal embeddings.

Theorem 2.3. Let L be a quadratic extension field of k and $q=$ $\left|\mathcal{O}_{L} / P_{L}\right|$. Then

1. if L is unramified,

$$
\left|R_{2}^{\times}(L) \backslash R_{0}^{\times}(L)\right|=q^{2}-q
$$

and

$$
\left|R_{2 n+2}^{\times}(L) \backslash R_{2 n}^{\times}(L)\right|=q^{2} \quad \text { for } n \geq 1,
$$

2. if L is ramified,

$$
\left|R_{n+1}^{\times}(L) \backslash R_{n}^{\times}(L)\right|= \begin{cases}q+1 & \text { for } n=0 \\ q & \text { for } n \geq 1 .\end{cases}
$$

Proof. See Theorem 3.5 in [8].

3. Embeddings

In this section we will discuss the embeddings between orders. By an embedding we mean a k (or \mathcal{O}_{k}, the ring of integers) injective homomorphism. Let L and m be quadratic extensions of k. Then we will now determine all possible embeddings of $R_{n}(L)$ into $R_{m}(K)$ for nonnegative integers n and m. Assume that $K \subset A$. Let \mathcal{O}_{K} be the maximal order of K. We say \mathcal{O}_{K} is embeddable in $R_{n}(L)$ if there exists an embedding ϕ of K into A such that $\phi\left(\mathcal{O}_{K}\right) \subset R_{n}(L)$. According to Theorem 17.3 [13], all maximal orders of A are A^{\times}conjugate to each other. Hence \mathcal{O}_{K} is embeddable into $R_{0}(L)$ and \mathcal{O}_{L} is embeddable into $R_{0}(K)$.

Definition 4. Let K and L be quadratic extensions of k contained in B. Then $\mu(K, L)$ is the nonnegative integer or ∞ such that $\mu(K, L) \geq n$ if and only if \mathcal{O}_{K} is embeddable into $R_{n}(L)$.

Lemma 3.1. Let K and L be the quadratic extensions of k contained in B. Then \mathcal{O}_{K} is embeddable in $R_{n}(L)$ if and only if $R_{n}(K) \simeq R_{n}(L)$.

Proof. See Lemma 3.2 in [9].
Remark. From Corollary 2.2, it is easy to see the followings. \mathcal{O}_{K} is embeddable in $R_{n}(L)$ if and only if \mathcal{O}_{L} is embeddable in $R_{n}(K)$. Thus we have Then $\mu(K, L)=\mu(L, K)$.

Let $\mathcal{O}^{2}-4 \mathcal{O}=\left\{s^{2}-4 n \mid s, n \in \mathcal{O}\right\}$ and let $\Delta_{\sigma}=\left(\pi^{\sigma} U \cap\left(\mathcal{O}^{2}-4 \mathcal{O}\right) / U^{2}\right.$ for $\sigma=0,1,2 \cdots$.

Definition 5. $\Delta_{0}^{*}=\Delta_{0}-\{1\}, \Delta_{1}^{*}=\Delta_{1}$ and $\Delta_{\sigma}^{*}=\Delta_{\sigma}-\pi^{2} \Delta_{\sigma-2}$ for $\sigma \geq 2$.
3.1. Note that $\Delta_{\sigma}^{*} \neq \phi$ only if $\sigma=2 \rho, 0 \leq \rho \leq e$ or $\sigma=2 e+1$ where $e=\operatorname{ord}_{k}(2)$. Let

$$
\Delta^{*}=\cup_{\sigma=0}^{\infty} \Delta_{\sigma}^{*}=\left(\cup_{\rho=0}^{e} \Delta_{2 \rho}^{*}\right) \cup \Delta_{2 e+1}^{*}
$$

Then we know that Γ is a maximal order of a quadratic extension field of k if and only if $\Delta(\Gamma) \in \Delta^{*}$. If $1 \leq \rho \leq e$,

$$
\Delta_{2 \rho}^{*}=\pi^{2 \rho}\left(U^{2}+\pi^{2 e-2 \rho+1} U\right) / U^{2}
$$

There is a bijective correspondence between elements of Δ^{*} and quadratic extension field of k given by $\Delta(\Gamma) \rightarrow \Gamma \otimes \mathcal{O}_{k}$ for $\Delta(\Gamma)$ an element of Δ^{*}.

Thus we can classify all quadratic extension fields of a dyadic local field k as follows: Δ_{0}^{*} contains one point which corresponds to the unique unramified quadratic extension of k and

$$
\Delta_{2 e+1}^{*}=\pi^{2 e+1} U / U^{2}
$$

contains $2 q^{2}$ points representatives where $q=|\mathcal{O} / P|$.
Lemma 3.2. Let $U=\mathcal{O}^{\times}$. Then

$$
U^{2}=U^{2}+P^{2 e+1} \subset U^{2}+P^{2 e} \subset \cdots \subset U^{2}+P^{2}=U^{2}+P=U
$$

and

$$
\left(U^{2}+P^{\sigma}\right) /\left(U^{2}+P^{\sigma+1}\right) \simeq \begin{cases}1 & \sigma \text { even and }<2 e \\ \mathbb{Z} / 2 \mathbb{Z} & \sigma=2 e \\ \bar{k} & \sigma \text { odd }\end{cases}
$$

Proof. See Proposition 1.4 in [6].
3.2. We introduce the following notation;

$$
\Delta R_{n}(L)=\left\{\Delta(\alpha) \quad \bmod U^{2} \mid \alpha \in R_{n}(L)\right\}
$$

where U is the set of all units in \mathcal{O} and $\Delta(\alpha)=\operatorname{Tr}(\alpha)^{2}-4 \mathrm{~N}(\alpha)$.
Proposition 3.3. If $t=t(L)>0$ and $n \geq 3$, then

$$
\Delta_{t+1}^{*} \cap \Delta R_{t+n}(L)=\Delta(L)\left(U^{2}+P^{2 e+n-t-2}\right)
$$

Proof. See [6].

Lemma 3.4. Let $t(L)=2 e, R_{n}=R_{n}(L)$, and $0 \leq \sigma \leq e$. Then

$$
\Delta R_{0} \cap \Delta_{2 \sigma}^{*}=\Delta_{2 \sigma}^{*}
$$

and for $n \geq 1$

$$
\Delta R_{2 n} \cap \Delta_{2 \sigma}^{*}=\Delta R_{2 n+1} \cap \Delta_{2 \sigma}^{*}=\left\{\begin{array}{l}
\emptyset \text { if } \quad n>\sigma \\
\Delta_{2 \sigma}^{*} \text { if } \quad n \leq \sigma
\end{array}\right.
$$

Proof. See [6].

Lemma 3.5. Assume that L and L^{\prime} are non isomorphic quadratic extensions of k contained in $B\left(\right.$ i.e. $\left.\Delta(L) \neq \Delta\left(L^{\prime}\right)\right)$ and let M be any quadratic extension of k contained in B with $t(M)=2 e$. We have

1. if $0<t(L)<2 e$, then $\mu(L, M)=t(L)+1$,
2. if $0<t(L)=t\left(L^{\prime}\right)<2 e$, then $\mu\left(L, L^{\prime}\right) \geq t(L)+2$,
3. if $0<t(L)=t\left(L^{\prime}\right)=2 e$, then $\mu\left(L, L^{\prime}\right) \geq 2 e+3$.

Proof. (1): By Proposition 3.3, $\Delta(L) \in \Delta\left(R_{2 n+1}(M)\right)$ if and only if $2 n+1=t(L)+1$. Hence $\mu(L, M)=t(L)+1$. (2): Letting $t(L)=2 \sigma-1$, we have $\Delta(L) \in \Delta_{2 \sigma}^{*}$. Hence, $\mu\left(L, L^{\prime}\right)=t(L)+2$ which proves (2). By Lemma 3.1, $\nu \leq t(L)+2$. Then $R_{\nu}(L) \simeq R_{\nu}(M) \simeq R_{\nu}\left(L^{\prime}\right)$. So $\mu\left(L, L^{\prime}\right) \geq t(L)+2$. (3): we have $\Delta_{2 e+1}^{*} \cap \Delta R_{2 e+3}(L)=\Delta(L) U=\Delta_{2 e+1}^{*}$. By Lemma 3.1, $\mu\left(L, L^{\prime}\right) \geq t(L)+3$ which proves (3).

We are now able to answer the questions about the embeddability as follows.

Theorem 3.6. Let L^{\prime} and L be quadratic extensions of k in B. The number $\mu\left(L^{\prime}, L\right)$ is determined as follows.

1. if $\Delta(L)=\Delta\left(L^{\prime}\right)$, then $\mu\left(L, L^{\prime}\right)=\infty$,
2. if $t(L) \neq t\left(L^{\prime}\right)$, then $\mu\left(L, L^{\prime}\right)=2+\min \left(t(L), t\left(L^{\prime}\right)\right)$,
3. if $t(L)=t\left(L^{\prime}\right)=t$ and $\Delta(L) \neq \Delta\left(L^{\prime}\right)$, there is a unique nonnegative integer i which is either odd and satisfies $2 e-t \leq i \leq 2 e-1$ or is equal to $2 e$ such that $\Delta(L)^{-1} \Delta\left(L^{\prime}\right) \in U^{2}+P^{i}, \Delta(L)^{-1} \Delta\left(L^{\prime}\right) \notin$ $U^{2}+P^{i+1}$. Then $\mu\left(L, L^{\prime}\right)=2 t-2 e+2+i$.
4. Assume $t(L)>0$. then there is a unique (up to isomorphism) field L^{\prime} such that $\mu\left(L, L^{\prime}\right)=2 t+2$. Otherwise, $\mu\left(L, L^{\prime}\right)$ takes on the values $2 \tau+1,0 \leq \tau \leq t$.

Proof. (1) is trivial, so we consider (2). Let M be any quadratic extension of k with $t(M)=2 e$. Then by Lemma 3.5, $R_{t+2}(L) \simeq$ $R_{t+2}\left(L^{\prime}\right) \simeq R_{t+2}(M)$ but $R_{t+3}(L) \not 千 R_{t+3}\left(L^{\prime}\right) \not 千 R_{t+3}(M)$. Hence
$\mu\left(L, L^{\prime}\right)=\min \left(t(L), t\left(L^{\prime}\right)\right)+2$. Next, let $t(L)=t\left(L^{\prime}\right)$ and $\Delta(L) \neq$ $\Delta\left(L^{\prime}\right)$. By Lemma 3.2, $\Delta(L)^{-1} \Delta\left(L^{\prime}\right) \in U$ implies that there exists i such that $\Delta(L)^{-1} \Delta\left(L^{\prime}\right) \in\left(U^{2}+P^{i}\right)-\left(U^{2}+P^{i+1}\right)$. Finally, since $\Delta\left(L^{\prime}\right) \in$ $\Delta R_{t+2}(L)$, let $n \geq 3$. Then by Lemma 3.2, $\Delta\left(L^{\prime}\right) \in \Delta R_{t+n}(L) \Longleftrightarrow$ $\Delta(L)^{-1} \Delta\left(L^{\prime}\right) \in U^{2}+P^{2 e+n-t-2} \Longleftrightarrow i \geq 2 e+n-t-2 \Longleftrightarrow$ $2 t-2 e+2+i \geq t+n$. That is, $\mu\left(L, L^{\prime}\right)=2 t-2 e+2+i$.

4. Optimal embedding

Let B be a quaternion algebra over a local field k and let K be a semi simple algebra of dimension 2 over k. Also, let α generate the maximal order $\mathcal{O}+\mathcal{O} \alpha$ of K where \mathcal{O} is the ring of integers of k. By an embedding of K into B, we mean a k (or \mathcal{O}) injective homomorphism.

Definition 6. Let α be as above. For a nonnegative integer m,
$E\left(\pi^{m} \alpha, R_{n}\right)=\left\{\phi \mid \phi\right.$ is an embedding of $k(\alpha)$ into B with $\left.\phi\left(\pi^{m} \alpha\right) \in R_{n}\right\}$
$\operatorname{Eop}\left(\pi^{m} \alpha, R_{n}\right)=\left\{\phi \in E\left(\pi^{m} \alpha, R_{n}\right) \mid \phi(k+k \alpha) \cap R_{n}=\phi\left(\mathcal{O}+\mathcal{O} \pi^{m} \alpha\right)\right\}$
where $n \geq 0$.
Lemma 4.1. Let the notations be as in Definition 6 above. Then for $m \geq 1$,

$$
\operatorname{Eop}\left(\pi^{m} \alpha, R_{\nu}\right)=E\left(\pi^{m} \alpha, R_{\nu}\right)-E\left(\pi^{m-1} \alpha, R_{\nu}\right)
$$

Proof. If $\varphi \in \operatorname{Eop}\left(\pi^{m} \alpha, R_{\nu}\right)$, then $\varphi(k+k \alpha) \cap R_{\nu}=\mathcal{O}+\mathcal{O} \pi^{m} \varphi(\alpha)$. Suppose $\varphi\left(\pi^{m-1} \alpha\right) \in \mathcal{O}+\mathcal{O} \pi^{m} \varphi(\alpha)$. Let $\varphi\left(\pi^{m-1} \alpha\right)=x+y \pi^{m} \varphi(\alpha)$ for $x, y \in \mathcal{O}$. Then $\pi^{m-1} \varphi(\alpha)=x(y \pi-1)^{-1} \in \mathcal{O}$, which implies $\varphi(\alpha) \in k$. This contradicts that $k+k \alpha$ is a semisimple algebra of rank 2 over k. Hence $\varphi\left(\pi^{m-1} \alpha\right) \notin R_{\nu}$. That is $\varphi \notin E\left(\pi^{m-1} \alpha, R_{\nu}\right)$.

Conversely, if $\varphi \in E\left(\pi^{m} \alpha, R_{\nu}\right)-E\left(\pi^{m-1} \alpha, R_{\nu}\right)$, then $\varphi(k+k \alpha) \cap R_{\nu}=$ $(k+k \varphi(\alpha)) \cap R_{\nu} \subset \mathcal{O}+\mathcal{O} \varphi(\alpha)$. Let $x+y \varphi(\alpha) \in(k+k \varphi(\alpha)) \cap R_{\nu}$ with $x, y \in \mathcal{O}$. Then $y \varphi(\alpha) \in R_{\nu}$ and $\pi^{m-1} \varphi(\alpha) \notin R_{\nu}$ imply $y \in P^{m}$. Thus $(k+k \varphi(\alpha)) \cap R_{\nu} \subset \mathcal{O}+\mathcal{O} \pi^{m} \varphi(\alpha)$. It is clear that $\mathcal{O}+\mathcal{O} \pi^{m} \varphi(\alpha) \subset$ $k+k \varphi(\alpha)) \cap R_{\nu}$. That is $\varphi \in \operatorname{Eop}\left(\pi^{m} \alpha, R_{\nu}\right)$.

Corollary 4.2. If α is embeddable in R_{ν}, then $\operatorname{Eop}\left(\alpha, R_{\nu}\right)=E\left(\alpha, R_{\nu}\right)$.
Proof. It is clear from Definition 6.
Lemma 4.3. Assume that $m \geq 1$.

$$
E\left(\pi^{m} \alpha, R_{\nu}\right)=E\left(\pi^{m-1} \alpha, R_{\nu-2}\right)
$$

where $\nu \geq 2$.

Proof. First, we prove the unramified case. If L is unramified, then ν is even. Let $\varphi\left(\pi^{m} \alpha\right)=a+\xi b \in \mathcal{O}_{L}+\xi P_{L}^{\frac{\nu}{2}}$, then $N\left(\varphi\left(\pi^{m} \alpha\right)\right)=$ $N(a)-N(b)$ implies that $a \in \pi_{L} \mathcal{O}_{L}$.

$$
\varphi\left(\pi^{m-1} \alpha\right)=\pi^{-1} \varphi\left(\pi^{m} \alpha\right)=\pi^{-1} a+\xi \pi^{-1} b \in \mathcal{O}_{L}+\xi \pi^{-1} P_{L}^{\nu-2}=R_{\nu-2} .
$$

Second, if L is ramified, then for $\varphi \in E\left(\pi^{m} \alpha, R_{\nu}\right)$ we have $\varphi\left(\pi^{m} \alpha\right)=$ $a+(1+\xi) b \in R_{\nu}$ with $a \in \mathcal{O}_{L}$ and $b \in P_{L}^{\nu-t-1} . N(a+(1+\xi) b)=N(a)+$ $\operatorname{Tr}(a \bar{b}) \in P^{2 m}$. Since $\nu \geq 2, b \in P_{L}^{\nu-t-1}, \operatorname{Tr}(a \bar{b}) \in P$ by Proposition 4 in pp. 142 [14]. Thus $N(a) \in P$ and $a \in P_{L}$. Let $a=\pi_{L} a^{\prime}$ with $a^{\prime} \in \mathcal{O}$. Since $a^{\prime}=\left(\pi^{m-1} \varphi(\alpha)+(1+\xi) b \pi_{L}^{-2}\right) \pi_{L}$ and $\pi^{m-1} \varphi(\alpha)+(1+\xi) b \pi_{L}^{-2} \in R_{0}$, $a^{\prime} \in P_{L}$.

Hence,

$$
\begin{aligned}
\varphi\left(\pi^{m-1} \alpha\right) & =\pi^{-1} \varphi\left(\pi^{m} \alpha\right)=\pi^{-1} a+(1+\xi) \pi^{-1} b \\
& \in \mathcal{O}_{L}+(1+\xi) \pi^{-1} P_{L}^{\nu-t-1} \subset R_{\nu-2} .
\end{aligned}
$$

Corollary 4.4. Assume that $m \geq 1$.

1. If $t(L)=-1$ and $\nu \geq 1$,

$$
E\left(\pi^{m} \alpha, R_{2 \nu}\right)= \begin{cases}E\left(\pi^{m-\nu} \alpha, R_{0}\right) & \text { if } m \geq \nu, \\ E\left(\alpha, R_{2 \nu-2 m}\right) & \text { if } m<\nu .\end{cases}
$$

2. If $t(L)>0$,

$$
E\left(\pi^{m} \alpha, R_{\nu}\right)=\left\{\begin{array}{l}
E\left(\pi^{m-\frac{\nu}{2}} \alpha, R_{0}\right) \quad \text { if } \nu \text { is even and } \nu \leq 2 m, \\
E\left(\pi^{m-\frac{\nu-1}{2}} \alpha, R_{1}\right) \quad \text { if } \nu \text { is odd and } \nu \leq 2 m, \\
E\left(\alpha, R_{\nu-2 m}\right) \quad \text { if } \nu>2 m .
\end{array}\right.
$$

Proof. This is immediate from Lemma 3.5.
Lemma 4.5. Let $K=k+k \alpha$ be a quadratic extension of k contained in B. Then

$$
E\left(\alpha, R_{n}\right) \simeq\left\{h \in B^{\times} \mid h \alpha h^{-1} \in R_{n}\right\} / K^{\times}
$$

where the bijection is induced by the map,

$$
\begin{equation*}
\phi \in E\left(\alpha, R_{n}\right) \rightarrow g \in B^{\times} \text {where } \phi(\alpha)=g \alpha g^{-1} . \tag{4.1}
\end{equation*}
$$

Proof. For each $\phi \in E\left(\alpha, R_{n}\right)$, there exists $g \in B^{\times}$such that $\phi(\alpha)=$ $g \alpha g^{-1}$ by Neother Scholem theorem. Since the centralizer of α in B is K, we can define a map f from $E\left(\alpha, R_{n}\right)$ into B^{\times}induced by $\phi \rightarrow g$ with $\phi(\alpha)=g \alpha g^{-1}$, namely, $f(\phi)=g K^{\times}$. Then it is easy to see that $E\left(\alpha, R_{n}\right) \approx\left\{h \in B^{\times} \mid h \alpha h^{-1} \in R_{n}\right\} / K^{\times}$.

Corollary 4.6. Let $K=k+k \alpha$ be a quadratic extension of k contained in B. If α is embeddable in R_{n}, then $E\left(\alpha, R_{n}\right)$ is bijective to the set of cosets, $\left\{h \in B^{\times} \mid h R_{n} h^{-1}=R_{n}\right\} / K^{\times}$by the map induced by (4.1).

Proof. By Lemma 4.5, it suffices to show that $\left\{h \in B^{\times} \mid h \alpha h^{-1} \in\right.$ $\left.R_{n}\right\} / K^{\times}=\left\{h \in B^{\times} \mid h R_{n} h^{-1} \subset R_{n}\right\} / K^{\times}$. If $x R_{n} x^{-1} \subset R_{n}$, Then $x \alpha x^{-1} \in R_{n}$. Conversely, if $x \alpha x^{-1} \in R_{n}, \mathcal{O}_{\alpha}=\mathcal{O}+\mathcal{O} \alpha \subset x^{-1} R_{n} x$ and $\mathcal{O}_{\alpha} \subset R_{n}$. By Corollary 2.2, the n - th (or $\frac{n}{2}$-th) largest nonmaximal order containing \mathcal{O}_{α} is unique. We have $R_{n}=x^{-1} R_{n} x$. Thus $\{h \in$ $\left.B^{\times} \mid h \alpha h^{-1} \in R_{n}\right\} / K^{\times}=\left\{h \in B^{\times} \mid h R_{n} h^{-1} \subset R_{n}\right\} / K^{\times}$.
4.1. For the computational convenience, we introduce a new notation, $\mathcal{N}\left(R_{\nu}\right)=\left\{x \in R_{0}(L)^{\times} \mid x^{-1} R_{\nu} x=R_{\nu}\right\}$.

Lemma 4.7. Let $K=k+k \alpha$ be a quadratic extension field of k contained in B. Then $\mathcal{O}_{\alpha}=\mathcal{O}+\mathcal{O} \alpha$ is an order in K. If α is embeddable in $R_{n},\left\{h \in B^{\times} \mid h R_{n} h^{-1}=R_{n}\right\} / K^{\times} \approx \mathcal{N}\left(R_{n}\right) / \mathcal{O}_{\alpha}^{\times}$for $\nu \geq 1$.

Proof. It is easy to see $\left\{h \in B^{\times} \mid h R_{n} h^{-1} \subset R_{n}\right\}=\left\{h \in B^{\times} \mid h R_{n} h^{-1}=\right.$ $\left.R_{n}\right\}$. Without loss of generality, we assume $\alpha \in R_{n}$. Let $M\left(R_{n}\right)=$ $\left\{h \in B^{\times} \mid h R_{n} h^{-1}=R_{n}\right\}$. Since $M\left(R_{0}\right)=k^{\times} R_{0}^{\times}, M\left(R_{2 \nu}\right) \subset M\left(R_{0}\right)=$ $K^{\times} R_{0}^{\times}$for $\nu \geq 1 . M\left(R_{2 \nu}\right)=\left\{g \in R_{0}^{\times} K^{\times} \mid g R_{2 \nu} g^{-1}=R_{2 \nu}\right\}=M\left(R_{2 \nu}\right) K^{\times}$. Thus each coset in $M\left(R_{2 \nu}\right) / K^{\times}$corresponds to a coset in $M\left(R_{2 \nu}\right) K^{\times} / K^{\times}$. That is $M\left(R_{2 \nu}\right) / K^{\times} \simeq \mathcal{N}\left(R_{2 \nu}\right) K^{\times} / K^{\times}$. Next, by the map $f: \quad x \mathcal{O}_{\alpha}^{\times} \rightarrow$ $x K^{\times} \mathcal{N}\left(R_{2 \nu}\right) K^{\times} / K^{\times} \approx \mathcal{N}\left(R_{2 \nu}\right) / \mathcal{O}_{\alpha}^{\times}$.

Proposition 4.8. Let L be a ramified quadratic extension field of k, i.e. $0<t(L)$. Then we have

$$
\mathcal{N}\left(R_{\nu}\right)= \begin{cases}R_{0}^{\times} & \text {if } \nu=0 \\ R_{\left[\frac{1}{2} \nu\right]}^{\times} & \text {if } 0<\nu \leq 2 t+2, \\ R_{\nu-t-1}^{\times} \cup \xi R_{\nu-t-1}^{\times} & \text {if } 2 t+2<\nu\end{cases}
$$

where $[x]$ is the largest integer not greater than x.
Proof. See Theorem 4.3 in [7].
Remark. Two different embeddings $\phi_{1}, \phi_{2} \in E\left(\pi^{m} \alpha, R_{n}\right)$ are said to R_{n}^{\times}equivalent if there exists $\gamma \in R_{n}^{\times}$such that $\phi_{2}=\gamma \phi_{1} \gamma^{-1}$ for all $x \in \mathcal{O}+\mathcal{O} \pi^{m} \alpha$.
4.2. In a quaternion algebra, it is known that all maximal orders are B^{\times}conjugate each other [13]. It is known that the number of R_{0}^{\times} equivalent classes of optimal embeddings of α into R_{0} is 1 (See [5] or [6]).

Thus we are able to write it as $R_{0}^{\times} g \mathcal{O}_{L}^{\times}$for some $g \in B^{\times}$. On the other hand, in cases of $t(L)=2 e, R_{1}^{\times}$equivalent classes of optimal embeddings of α into R_{1} is 2 (See 2.2 pp. 65 in [5]). That is, R_{1}^{\times}equivalent classes of optimal embeddings can be written as $R_{1}^{\times} g_{1} \mathcal{O}_{L}^{\times} \cup R_{1}^{\times} g_{2} \mathcal{O}_{L}^{\times}$for some $g_{1}, g_{2} \in B^{\times}$.

We are now able to compute the number of optimal embeddings. For the theoretical reason, we divided the cases into three parts according to L. Namely, $t(L)=-1,0<t(L)<2 e$ and $t(L)=2 e$ cases. First we consider the $t(L)=-1$ case.

Theorem 4.9. Assume that $t(L)=-1$. The number of $R_{2 \nu}^{\times}$equivalence classes of $\operatorname{Eop}\left(\pi^{m} \alpha, R_{2 \nu}\right)$ is given as follows.

	$\Delta(\alpha) \in \Delta_{0}^{*}$	$\Delta(\alpha) \notin \Delta_{0}^{*}$
$m>\nu$	$q^{\nu+1}-q^{\nu}$	$q^{\nu+1}-q^{\nu}$
$m=\nu>0$	$q^{m}-2 q^{m-1}$	q^{m}
$m=\nu=0$	1	1
$0<m<\nu$	$2 q^{m+1}-2 q^{m}$	0
$0=m<\nu$	2	0

where $q=|\mathcal{O} / P|$.

Proof. See [8].
Lemma 4.10. Assume $0<t(L)<2 e$. Let α be an integral element of degree 2 over \mathcal{O} which generates the maximal order of an algebra $k(\alpha)$ and let m be a nonnegative integer. Then

$$
E\left(\pi^{m} \alpha, R_{1}\right)=E\left(\pi^{m} \alpha, R_{2}\right)
$$

Proof. Assume $m \geq 1$. Let $\pi^{m} \varphi(\alpha)=a+(1+\xi) b \in R_{1}$ for $\varphi \in$ $E\left(\pi^{m} \alpha, R_{1}\right)$.

$$
\operatorname{ord}_{L} \Delta\left(\pi^{m} \varphi(\alpha)\right)=\operatorname{ord}_{L}(a+b-\bar{a}-\bar{b}+2 \xi b)^{2}
$$

Since $\operatorname{ord}_{L}(a-\bar{a}) \geq t+1$ and $\operatorname{ord}_{L}(2 \xi b) \geq 2 e-t \geq 1, \operatorname{ord}_{L}(b-\bar{b}) \geq 1$ which implies that $b \in P_{L}^{2-t-1}$. i.e. $\pi^{m} \varphi(\alpha) \in R_{2}$. Thus

$$
E\left(\pi^{m} \alpha, R_{1}\right)=E\left(\pi^{m} \alpha, R_{2}\right)
$$

If $m=0$, then $\varphi(\alpha) \in R_{1}$ means that $\mu(k(\alpha), L) \geq 1$. By Theorem 3.6, we have $\mu(k(\alpha), L) \geq 2$ which implies $\varphi(\alpha) \in R_{2}$.

Corollary 4.11. Assume $0<t(L)<2 e$ and $2 \leq m$. Let α be as in Lemma 4.10. Then

$$
\operatorname{Eop}\left(\pi^{m} \alpha, R_{1}\right)=\operatorname{Eop}\left(\pi^{m-1} \alpha, R_{0}\right)
$$

Proof. If $m \geq 2$, this is immediate from Lemma 4.3 and Lemma 4.10.

Corollary 4.12. Assume $0<t(L)<2 e$. Let α be as in Lemma 4.10. Then

$$
\operatorname{Eop}\left(\pi \alpha, R_{1}\right)= \begin{cases}E\left(\alpha, R_{0}\right), & \mu(k(\alpha), L)=0 \\ \emptyset, & \mu(k(\alpha), L) \geq 3\end{cases}
$$

Proof. By Lemma 4.1 and Corollary 4.4,
$\operatorname{Eop}\left(\pi \alpha, R_{1}\right)=E\left(\pi \alpha, R_{1}\right)-E\left(\alpha, R_{1}\right)=E\left(\alpha, R_{0}\right)-E\left(\alpha, R_{1}\right)=\emptyset$.

Theorem 4.13. Assume that $0<t(L)<2 e$. Let α be an element of semisimle algebra K of dimension 2 over k such that $\mathcal{O}+\mathcal{O} \alpha$ is the maximal order of K. Then R_{ρ}^{\times}equivalence classes of $\operatorname{Eop}\left(\pi^{m} \alpha, R_{\rho}\right)$ is as follows, where $\rho=2 \nu+2$ or $2 \nu+1$.

1. If $m>\nu+1$,

$$
R_{\rho}^{\times} \backslash R_{0}^{\times} /\left(\mathcal{O}+\mathcal{O} \pi^{m-\nu-1} g \alpha g^{-1}\right)^{\times}
$$

where $\pi^{m-\nu-1} g \alpha g^{-1} \in R_{0}-R_{2}$ for some $g \in B^{\times}$.
2. If $m=\nu+1$,
$R_{2 \nu+1}$ case $: \begin{cases}R_{2 \nu+1}^{\times} \backslash R_{0}^{\times} / \mathcal{O}_{\alpha}^{\times} & \text {if } \mu(k(\alpha), L)=0, \\ \emptyset & \text { if } \mu(k(\alpha), L) \geq 3,\end{cases}$
$R_{2 \nu+2}$ case : $\begin{cases}R_{2 \nu+2}^{\times} \backslash R_{0}^{\times} / \mathcal{O}_{\alpha}^{\times} & \text {if } \mu(k(\alpha), L)=0, \\ R_{2 \nu+2}^{\times} \backslash\left(\mathcal{N}\left(R_{0}\right)-\mathcal{N}\left(R_{2}\right)\right) / \mathcal{O}_{\alpha}^{\times} & \text {if } \mu(k(\alpha), L) \geq 3 .\end{cases}$
3. If $m \leq \nu$,
a. $\mu(k(\alpha), L)=0$,
\emptyset,
b. $0<\mu(k(\alpha), L)<\infty$,
$\begin{cases}\emptyset & \text { if } \mu(k(\alpha), L)<\rho-2 m, \\ R_{\rho}^{\times} \backslash \mathcal{N}\left(R_{\rho-2 m}\right) / \mathcal{O}_{\alpha}^{\times} & \text {if } \mu(k(\alpha), L)=\rho-2 m, \\ R_{\rho}^{\times} \backslash\left(\mathcal{N}\left(R_{\rho-2 m}\right)-\mathcal{N}\left(R_{\rho-2 m+2}\right)\right) / \mathcal{O}_{\alpha}^{\times} & \text {if } \mu(k(\alpha), L)>\rho-2 m .\end{cases}$
c. $\mu=\infty$,

$$
R_{\rho}^{\times} \backslash\left(\mathcal{N}\left(R_{\rho-2 m}\right)-\mathcal{N}\left(R_{\rho-2 m+2}\right)\right) / \mathcal{O}_{\alpha}^{\times} .
$$

Proof. If $m>\nu+1$, Lemma 4.3 and Corollary 4.4, $\operatorname{Eop}\left(\pi^{m} \alpha, R_{\rho}\right)=$ $\operatorname{Eop}\left(\pi^{m-\nu} \alpha, R_{\rho-2 \nu}\right)$. By 4.2, R_{0}^{\times}equivalence classes of $\operatorname{Eop}\left(\pi^{m-\nu} \alpha, R_{\rho-2 \nu}\right)$ is $R_{0}^{\times} \backslash R_{0}^{\times} /\left(\mathcal{O}+\mathcal{O} \pi^{m-\nu} g \alpha g^{-1}\right)^{\times}$.

If $m=\nu+1$ and $\rho=2 \nu+1$, by Corollary 4.4 and Corollary 4.11,

$$
o p\left(\pi^{m} \alpha, R_{\rho}\right)=E\left(\pi \alpha, R_{1}\right) \approx \begin{cases}R_{0}^{\times} / \mathcal{O}_{\alpha}^{\times} & \text {if } \mu(k(\alpha), L)=0, \\ \emptyset & \text { if } \mu(k(\alpha), L) \geq 3 .\end{cases}
$$

If $m=\nu+1$ and $\rho=2 \nu+2$,

$$
\begin{aligned}
\operatorname{Eop}\left(\pi^{m} \alpha, R_{\rho}\right) & =E\left(\pi^{m} \alpha, R_{2 \nu+2}\right)-E\left(\pi^{m-1} \alpha, R_{2 \nu+2}\right) \\
& =E\left(\alpha, R_{0}\right)-E\left(\alpha, R_{2}\right) \\
& \approx \begin{cases}R_{0}^{\times} / \mathcal{O}_{\alpha}^{\times} & \text {if } \mu(k(\alpha), L)=0, \\
R_{0}^{\times} / \mathcal{O}_{\alpha}^{\times}-\mathcal{N}\left(R_{2}\right) / \mathcal{O}_{\alpha}^{\times} & \text {if } \mu(k(\alpha), L) \geq 3 .\end{cases}
\end{aligned}
$$

If $m \leq \nu, \operatorname{Eop}\left(\pi^{m} \alpha, R_{\rho}\right)=E\left(\pi^{m} \alpha, R_{\rho}\right)-E\left(\pi^{m-1} \alpha, R_{\rho}\right)=E\left(\alpha, R_{\rho-2 m}\right)$
$-E\left(\alpha, R_{\rho-2 m+2}\right)$.
Thus if $0<\mu(k(\alpha), L)<\infty$,

$$
\begin{aligned}
& E\left(\alpha, R_{\rho-2 m}\right)-E\left(\alpha, R_{\rho-2 m+2}\right) \\
\approx & \begin{cases}\emptyset & \text { if } 2 \tau+1<\rho-2 m, \\
\mathcal{N}\left(R_{\rho-2 m}\right) / \mathcal{O}_{\alpha}^{\times} & \text {if } 2 \tau+1=\rho-2 m, \\
\left(\mathcal{N}\left(R_{\rho-2 m}\right)-\mathcal{N}\left(R_{\rho-2 m+2}\right)\right) / \mathcal{O}_{\alpha}^{\times} & \text {if } 2 \tau+1>\rho-2 m .\end{cases}
\end{aligned}
$$

If $\mu=\infty, R_{\rho}^{\times} \backslash\left(\mathcal{N}\left(R_{\rho-2 m}\right)-\mathcal{N}\left(R_{\rho-2 m+2}\right) / \mathcal{O}_{\alpha}^{\times}\right.$.
Lemma 4.14. Let $\mathcal{N}_{\sigma}^{*}=\mathcal{N}\left(R_{\sigma}\right)-\mathcal{N}\left(R_{\sigma+1}\right)$. If $t(L)>0$ and $\nu \geq$ $\sigma \geq 2$, then

$$
R_{\nu}^{\times} \backslash \mathcal{N}_{\sigma}^{*} / \mathcal{O}_{\alpha}^{\times} \approx\left(R_{\nu^{\prime}}^{\times} \backslash R_{\nu^{\prime}-1}^{\times}\right) \times\left(R_{\nu^{\prime}-2}^{\times} \backslash R_{\nu^{\prime}-3}^{\times}\right) \times \cdots \times\left(R_{\sigma}^{\times} \backslash \mathcal{N}_{\sigma}^{*}\right)
$$

where $\nu^{\prime}= \begin{cases}\nu & \text { if } \nu \equiv \sigma \bmod 2, \\ \nu-1 & \text { if } \nu \not \equiv \sigma \bmod 2 .\end{cases}$
That is, the product of representatives of right hand side gives the representation of $R_{\nu}^{\times} \backslash \mathcal{N}_{\sigma}^{*} / \mathcal{O}_{\alpha}^{\times}$.

Proof. We prove this lemma by induction on ν. Without loss of generality, assume that $\alpha \in \mathcal{N}_{\sigma}^{*}$. If $\nu=\sigma$, for $x \in \mathcal{N}^{*}, R_{\sigma}^{\times} x \mathcal{O}_{\alpha}^{\times}=$ $x R_{\sigma}^{\times} \mathcal{O}_{\alpha}^{\times}=R_{\sigma}^{\times} x$. Therefore, $R_{\sigma}^{\times} \backslash \mathcal{N}_{\sigma}^{*} / \mathcal{O}_{\alpha}^{\times}=R_{\sigma}^{\times} \backslash \mathcal{N}_{\sigma}^{*}$. Next, assume the result holds $\nu=\tau \geq \sigma$.

Let $h_{1}, h_{2}, \cdots, h_{n}$ be the representatives of $R_{\tau}^{\times} \backslash \mathcal{N}_{\sigma}^{*} / \mathcal{O}_{\alpha}$ in \mathcal{N}_{σ}^{*} where $n=\left|R_{\tau}^{\times} \backslash \mathcal{N}_{\sigma}^{*} / \mathcal{O}_{\alpha}^{\times}\right|$. Fixing $h=h_{i}$ for some i, we need to determine
$R_{\tau+1}^{\times} \backslash R_{\tau}^{\times} h \mathcal{O}_{\alpha}^{\times} / \mathcal{O}_{\alpha}^{\times}$. By Corollary 4.6,

$$
\begin{aligned}
R_{\tau+1}^{\times} \backslash R_{\tau}^{\times} h \mathcal{O}_{\alpha}^{\times} / \mathcal{O}_{\alpha}^{\times} & \approx R_{\tau+1}^{\times} \backslash R_{\tau}^{\times} /\left\{h \mathcal{O}_{\alpha}^{\times} h^{-1} \cap R_{\tau}^{\times}\right\} \\
& \approx \begin{cases}R_{\tau+1}^{\times} \backslash R_{\tau}^{\times} & \text {if } h \mathcal{O}_{\alpha}^{\times} h^{-1} \cap R_{\tau}^{\times} \subset R_{\tau+1}^{\times}, \\
1 & \text { if } h \mathcal{O}_{\alpha}^{\times} h^{-1} \cap R_{\tau}^{\times} \not \subset R_{\tau+1}^{\times} .\end{cases}
\end{aligned}
$$

Now, $h \mathcal{O}_{\alpha}^{\times} h^{-1} \cap R_{\tau}^{\times} \not \subset R_{\tau+1}^{\times}$if and only if there exists a nonnegative integer s such that $h \pi^{s} \alpha h^{-1} \in R_{\tau}-R_{\tau+1}$. Since $\alpha \in R_{\sigma}$, there exists a nonnegative integer s such that $\sigma=\tau-2 s$. Thus

$$
R_{\tau+1}^{\times} \backslash R_{\tau}^{\times} / R_{\tau}^{\times} \cap h \mathcal{O}_{\alpha}^{\times} h^{-1}=\left\{\begin{array}{lll}
R_{\tau+1}^{\times} \backslash R_{\tau}^{\times} & \text {if } \tau=\sigma \bmod 2 \\
1 & \text { if } \tau \neq \sigma \quad \bmod 2 .
\end{array}\right.
$$

Thus if $\tau \equiv \sigma \bmod 2$, then $\pi^{s} h \alpha h^{-1} \in R_{\tau+1}$, otherwise, $\pi^{s} h \alpha h^{-1} \notin$ $R_{\tau+1}$. i.e. $\tau \equiv \sigma \bmod 2$.

Lemma 4.15. Assume that $y \in R_{\sigma}-R_{\sigma+2}$. If $t(L)>0$ and $\nu \geq 2$, then
$R_{\nu}^{\times} \backslash R_{\sigma}^{\times} /(\mathcal{O}+\mathcal{O} y)^{\times} \approx\left(R_{\nu^{\prime}}^{\times} \backslash R_{\nu^{\prime}-1}^{\times}\right) \times\left(R_{\nu^{\prime}-2}^{\times} \backslash R_{\nu^{\prime}-3}^{\times}\right) \times \cdots \times\left(R_{\sigma+1}^{\times} \backslash R_{\sigma}^{\times}\right)$ where $\nu^{\prime}= \begin{cases}\nu & \text { if } \nu \not \equiv \sigma \bmod 2, \\ \nu-1 & \text { if } \nu \equiv \sigma \bmod 2 .\end{cases}$

That is, the product of representatives of right hand side gives the representation of $R_{\nu}^{\times} \backslash R_{\sigma}^{\times} /(\mathcal{O}+\mathcal{O} y)^{\times}$.

Proof. We prove this lemma by induction on ν. Let $\mathcal{O}_{y}=\mathcal{O}+\mathcal{O} y$ for the notational convenience. If $\nu=\sigma$, we are done. So assume $\nu>\sigma$ and let $\sigma \leq k \leq \nu-1$. Assume $g_{1}, g_{2}, \cdots, g_{n}$ are representatives of $R_{k}^{\times} \backslash$ $R_{\sigma} / \mathcal{O}_{y}^{\times}$. Fixing $g=g_{i}$ for some i, we need to determine representatives of $R_{k+1}^{\times} \backslash R_{k} g \mathcal{O}_{y}^{\times} / \mathcal{O}_{y}^{\times} \approx R_{k+1}^{\times} \backslash R_{k}^{\times} / R_{k}^{\times} \cap g \mathcal{O}_{y}^{\times} g^{-1}$. By Corollary 4.6,

$$
R_{k+1}^{\times} \backslash R_{k}^{\times} / R_{k}^{\times} \cap g \mathcal{O}_{y}^{\times} g^{-1} \approx \begin{cases}R_{k+1}^{\times} \backslash R_{k}^{\times} & \text {if } g \mathcal{O}_{y}^{\times} g^{-1} \cap R_{k}^{\times} \subset R_{k+1}^{\times} \\ 1 & \text { if } g \mathcal{O}_{y}^{\times} g^{-1} \cap R_{k}^{\times} \not \subset R_{k+1}^{\times} .\end{cases}
$$

Now, $g \mathcal{O}_{y}^{\times} g^{-1} \cap R_{k}^{\times} \not \subset R_{k+1}^{\times}$if and only if there exists a nonnegative integer s such that $g \pi^{s} y g^{-1} \in R_{k}-R_{k+1}$. i.e. There exists a nonnegative integer s such that $\sigma=k-2 s$. Thus

$$
R_{k+1}^{\times} \backslash R_{k}^{\times} / R_{k}^{\times} \cap g \mathcal{O}_{y}^{\times} g^{-1}=\left\{\begin{array}{lll}
R_{k+1}^{\times} \backslash R_{k}^{\times} & \text {if } k=\sigma \quad \bmod 2, \\
1 & \text { if } k \neq \sigma & \bmod 2 .
\end{array}\right.
$$

Lemma 4.16. Assume $0<t=t(L)<2 e$ and set $R_{\sigma}=R_{\sigma}(L)$. Then
a. $n_{\sigma}=\left|R_{\sigma}^{\times} \backslash \mathcal{N}\left(R_{\sigma}\right)\right|= \begin{cases}1 & \text { if } \sigma=0, \\ q+1 & \text { if } \sigma=1, \\ q^{\left[\frac{\sigma+1}{2}\right]} & \text { if } 2 \leq \sigma \leq 2 t+2, \\ 2 q^{t+1} & \text { if } \sigma \geq 2 t+3 .\end{cases}$
b. $\tilde{n}_{\sigma}=\left|R_{\sigma}^{\times} \backslash \mathcal{N}\left(R_{\sigma+1}\right)\right|= \begin{cases}q^{\left[\frac{\sigma}{2}\right]} & \text { if } 0 \leq \sigma \leq 2 t+1, \\ 2 q^{t} & \text { if } 2 t+2 \leq \sigma .\end{cases}$
c. $n_{\sigma}^{*}=n_{\sigma}-\tilde{n}_{\sigma}= \begin{cases}0 & \text { if } 0 \leq \sigma<2 t+2 \text { and } \sigma \text { is even, } \\ q & \text { if } 1 \leq \sigma<2 t+2 \text { and } \sigma \text { is odd, } \\ q^{t+1}-2 q^{t} & \text { if } \sigma=2 t+2, \\ 2 q^{t+1}-2 q^{t} & \text { if } \sigma \geq 2 t+3 .\end{cases}$

Proof. This is immediate from Proposition 4.8 and Theorem 4.13.
Theorem 4.17. Assume $0<t(L)<2 e$ and set $R_{\sigma}=R_{\sigma}(L)$. then the number of R_{ν}^{\times}equivalence classes of $\operatorname{Eop}\left(\alpha, R_{\nu}\right)$ is as follows:

1. $\mu=0$.

	$\operatorname{Eop}\left(\pi^{m} \alpha, R_{2 \nu}\right)$	$\operatorname{Eop}\left(\pi^{m} \alpha, R_{2 \nu+1}\right)$
$m \geq \nu+1$	$q^{\nu}+q^{\nu-1}$	$q^{\nu}+q^{\nu-1}$
$m=\nu$	$q^{\nu}+q^{\nu-1}$	0
$m<\nu$	0	0

2. $\mu=2 \tau+1$.

	$\operatorname{Eop}\left(\pi^{m} \alpha, R_{2 \nu}\right)$	$\operatorname{Eop}\left(\pi^{m} \alpha, R_{2 \nu+1}\right)$
$m>\nu+1$	$q^{\nu}+q^{\nu-1}$	$q^{\nu+1}+q^{\nu}$
$m=\nu+1$	q^{ν}	$q^{\nu+1}$
$\tau>\nu-m, t=\nu-m>0$	q^{m+1}	$q^{m+1}+q^{m+t+1}-2 q^{m+t}$
$\tau>\nu-m, t>\nu-m>0$	q^{m+1}	q^{m+1}
$\tau>\nu-m=t+1$	$3 q^{m+t+1}-4 q^{m+t}$	$4 q^{m+t+1}-4 q^{m+t}$
$\tau>\nu-m>t+1$	$4 q^{m+t+1}-4 q^{m+t}$	$4 q^{m+t+1}-4 q^{m+t}$
$\tau=\nu-m>t+1$	$2 q^{m+t+1}$	$2 q^{m+t+1}$
$\tau=\nu-m=t+1$	$q^{m+\left[\frac{\tau}{2}\right]}$	$2 q^{m+t+1}$
$\tau=\nu-m<t+1$	$q^{m+\left[\frac{\tau}{2}\right]}$	$q^{m+\left[\frac{\tau}{2}\right]}$
$\tau=\nu-m=1$	$q^{m+1}+q^{m}$	$q^{\nu+1}$
$\tau<\nu-m$	0	0
$\nu=m$	q^{m+1}	q^{m}

3. $\mu=2 t+2$.

	$\operatorname{Eop}\left(\pi^{m} \alpha, R_{2 \nu}\right)$	$\operatorname{Eop}\left(\pi^{m} \alpha, R_{2 \nu+1}\right)$
$m>\nu+1$	$q^{\nu}+q^{\nu-1}$	$q^{\nu+1}+q^{\nu}$
$m=\nu+1$	q^{ν}	$q^{\nu+1}$
$m=\nu$	q^{ν}	q^{m+1}
$t \geq \nu-m>0$	q^{m+1}	q^{m+1}
$\nu-m=t+1$	$q^{m+\left[\frac{t}{2}\right]+1}$	0
$\nu-m>t+1$	0	0

4. $\mu=\infty$.

	$\operatorname{Eop}\left(\pi^{m} \alpha, R_{2 \nu}\right)$	$\operatorname{Eop}\left(\pi^{m} \alpha, R_{2 \nu+1}\right)$
$m>\nu+1$	$q^{\nu}+q^{\nu-1}$	$q^{\nu+1}+q^{\nu}$
$m=\nu+1$	$q^{\nu+1}$	$q^{\nu+2}$
$\nu-m>t+1$	$4 q^{m+t+1}-4 q^{m+t}$	$4 q^{m+t+1}-4 q^{m+t}$
$\nu-m=t+1$	$3 q^{m+t+1}-4 q^{m+t}$	$4 q^{m+t+1}-4 q^{m+t}$
$\nu-m=t$	q^{m+1}	$q^{m+1}+q^{m+t+1}-2 q^{m+t}$
$\nu-m<t$	q^{m+1}	q^{m+1}

Proof. It suffices to compute the number of double cosets given in Theorem 4.13.

1. $m>\nu+1$.

The number of $R_{2 \nu}^{\times}$equivalence classes of $\operatorname{Eop}\left(\pi^{m} \alpha, R_{2 \nu}\right)$ is $\left|R_{2 \nu}^{\times} \backslash R_{0}^{\times} /\left(\mathcal{O}+\mathcal{O} \pi^{m-\nu-1} g \alpha g\right)^{\times}\right|$. By Lemma 4.17 and Theorem 2.4, it is $q^{\nu-1}(q+1)$. Similarly, the number of $R_{2 \nu+1}^{\times}$equivalence classes of $\operatorname{Eop}\left(\pi^{m} \alpha, R_{2 \nu+1}\right)$ is $q^{\nu+1}+q^{\nu}$.
2. $m=\nu+1$.

If $\alpha \in R_{0}-R_{2}$, by Lemma 4.10, $\alpha \in R_{0}-R_{1}$. By Corollary 2.8, Theorem 4.15 and Lemma 4.17, $\left|R_{2 \nu+1} \backslash R_{0} / \mathcal{O}_{\alpha}^{\times}\right|=q^{\nu-1}(q+1)$ for $\mu=0$. On the other hand, $\left|R_{2 \nu} \backslash \mathcal{N}\left(R_{0}\right) / \mathcal{O}_{\alpha}^{\times}-R_{2 \nu} \backslash \mathcal{N}\left(R_{2}\right) / \mathcal{O}_{\alpha}^{\times}\right|=$ $q^{\nu} \cdot n_{0}^{*}+q^{\nu-1} \cdot n_{1}^{*}=q^{\nu}$ by Lemma 4.18 for $\mu \geq 3$.
3. $m \leq \nu$.

We divide it into four cases.

1. $\mu=0$.

If $m=\nu$, by Corollary 2.8, Theorem 4.15 and Lemma 4.17
$\left|R_{2 \nu} \backslash R_{0} / \mathcal{O}_{\alpha}^{\times}\right|=q^{\nu-1}(q+1)$. If $m<\nu$, it is 0 .
2. $\mu(k(\alpha), L)=2 \tau+1$.

We need to compute

$$
\begin{align*}
& \left|R_{\rho} \backslash \mathcal{N}\left(R_{\rho-2 m}\right) / \mathcal{O}_{\alpha}^{\times}-R_{\rho} \backslash \mathcal{N}\left(R_{\rho-2 m+2}\right) / \mathcal{O}_{\alpha}^{\times}\right| \tag{4.2}\\
= & \left|R_{\rho} \backslash\left(\mathcal{N}^{*}\left(R_{\rho-2 m}\right) \cup \mathcal{N}^{*}\left(R_{\rho-2 m+1}\right)\right) / \mathcal{O}_{\alpha}^{\times}\right| \tag{4.3}
\end{align*}
$$

a. $\tau>\nu-m$.

By (4.3) and Lemma 4.18,
$q^{m-1} \cdot n_{\rho-2 m}^{*}+q^{m} \cdot n_{\rho-2 m+1}^{*}$
$=q^{m} \cdot \begin{cases}0+q & \text { if } \rho-2 m=0, \\ q+0 & \text { if } \rho-2 m=1, \\ 0+q & \text { if } 2 \leq \rho-2 m \leq 2 t, \\ q+\left(q^{t+1}-2 q^{t}\right) & \text { if } \rho-2 m=2 t+1, \\ \left(q^{t+1}-2 q^{t}\right)+\left(2 q^{t+1}-2 q^{t}\right) & \text { if } \rho-2 m=2 t+2, \\ \left(2 q^{t+1}-2 q^{t}\right)+\left(2 q^{t+1}-2 q^{t}\right) & \text { if } \rho-2 m>2 t+2 .\end{cases}$
b. $\tau=\nu-m$.

By (4.3),
$\left|R_{\rho}^{\times} \backslash \mathcal{N}\left(R_{\rho-2 m}\right) / \mathcal{O}_{\alpha}^{\times}\right|$
$= \begin{cases}\left|R_{\rho}^{\times} \backslash R_{\left[\frac{1}{2} \rho\right]-m}^{\times} / \mathcal{O}_{\alpha}^{\times}\right| & \text {if } \rho-2 m \leq 2 t+2 \\ R_{\rho}^{\times} \backslash R_{\rho-m-t-1}^{\times} \cup \xi R_{\rho-m-t-1}^{\times} / \mathcal{O}_{\alpha}^{\times} \mid & \text {if } \rho-2 m>2 t+2\end{cases}$
$=q^{m} \cdot \begin{cases}q+1 & \text { if } \rho-2 m=0, \\ q+1 & \text { if } \rho-2 m=1, \\ q^{\left[\frac{\rho+1}{2}\right]-m} & \text { if } 2 \leq \rho-2 m \leq 2 t+2, \\ 2 q^{t+1} & \text { if } \rho-2 m \geq 2 t+3 .\end{cases}$
c. $\tau<\nu-m$.
(4.3) is 0 .
3. $\mu(L, k(\alpha))=2 t+2$.

$$
\begin{aligned}
& \begin{cases}\emptyset & \text { if } 2 t+2<\rho-2 m, \\
R_{\rho}^{\times} \backslash \mathcal{N}\left(R_{\rho-2 m}\right) / \mathcal{O}_{\alpha}^{\times}, & \text {if } 2 t+2=\rho-2 m, \\
R_{\rho}^{\times} \backslash\left(\mathcal{N}\left(R_{\rho-2 m}\right)-\mathcal{N}\left(R_{\rho-2 m+2}\right)\right) / \mathcal{O}_{\alpha}^{\times} & \text {if } 2 t+2>\rho-2 m,\end{cases} \\
&= \begin{cases}\emptyset & \text { if } 2 t+2<\rho-2 m, \\
R_{\rho}^{\times} \backslash R_{\frac{\rho-2 m}{\times}}^{2} / \mathcal{O}_{\alpha}^{\times}, & \text {if } 2 t+2=\rho-2 m, \\
q^{m} \cdot\left(n_{\rho-2 m}^{*}+n_{\rho-2 m+1}^{*}\right), & \text { if } 2 t+2>\rho-2 m .\end{cases} \\
&= \begin{cases}\emptyset, & \text { if } 2 t+2<\rho-2 m, \\
q^{m+\left[\frac{\rho+1}{2}\right]}, & \text { if } 2 t+2=\rho-2 m, \\
q^{m+1}, & \text { if } 2 t+2>\rho-2 m .\end{cases}
\end{aligned}
$$

4. $\mu(k(\alpha), L)=\infty$.

If $m \geq \nu$, the proof is exactly same as the above case.

$$
\text { If } m<\nu, \begin{cases}q^{m} \cdot\left(4 q^{t+1}-4 q^{t}\right), & \text { if } \rho-2 m \geq 2 t+3 \\ q^{m} \cdot\left(3 q^{t+1}-4 q^{t}\right), & \text { if } \rho-2 m=2 t+2, \\ q^{m} \cdot\left(q+q^{t+1}-2 q^{t}\right), & \text { if } \rho-2 m=2 t+1 \\ q^{m} \cdot q & \text { if } \rho-2 m \leq 2 t\end{cases}
$$

Theorem 4.18. Assume that $t(L)=2 e$. Let α be an element of semisimle algebra K of dimension 2 over k such that $\mathcal{O}+\mathcal{O} \alpha$ is the maximal order of K. Assume that $\alpha \in R_{0}(L)$.

1. If $m>\nu$, let $G_{i}=g_{i} \alpha g_{i}^{-1}$,

$$
\operatorname{Eop}\left(\pi^{m} \alpha, R_{2 \nu}\right) \approx R_{0}^{\times} /\left(\mathcal{O}+\mathcal{O} \pi^{m-\nu} g \alpha g^{-1}\right)^{\times}
$$

where $\pi^{m-\nu} g \alpha g^{-1} \in R_{0}-R_{2}$ for some $g \in B^{\times}$,
$\operatorname{Eop}\left(\pi^{m} \alpha, R_{2 \nu+1}\right) \approx R_{1}^{\times} /\left(\mathcal{O}+\mathcal{O} \pi^{m-\nu} G_{1}\right)^{\times} \cup R_{1}^{\times} /\left(\mathcal{O}+\mathcal{O} \pi^{m-\nu} G_{2}\right)^{\times}$,
where $g_{i} \pi^{m} \alpha g_{i}^{-1} \in R_{1}-R_{3}$ for some $g_{i} \in B^{\times}$for each $i=1,2$.
2. If $m=\nu$,
$\operatorname{Eop}\left(\pi^{m} \alpha, R_{2 \nu}\right) \approx \begin{cases}R_{0}^{\times} / \mathcal{O}_{\alpha}^{\times} & \text {if } \mu(k(\alpha), L)=0, \\ \mathcal{N}\left(R_{0}\right) / \mathcal{O}_{\alpha}^{\times}-\mathcal{N}\left(R_{2}\right) / \mathcal{O}_{\alpha}^{\times} & \text {if } \mu(k(\alpha), L) \geq 3 .\end{cases}$
and
$\operatorname{Eop}\left(\pi^{m} \alpha, R_{2 \nu+1}\right) \approx \begin{cases}\emptyset & \text { if } \mu(k(\alpha), L)=0, \\ \mathcal{N}\left(R_{1}\right) / \mathcal{O}_{\alpha}^{\times}-\mathcal{N}\left(R_{3}\right) / \mathcal{O}_{\alpha}^{\times} & \text {if } \mu(k(\alpha), L) \geq 3 .\end{cases}$
3. If $m<\nu$, let $\rho=2 \nu$ or $2 \nu+1$.
a. $0<\mu(k(\alpha), L)<\infty$. Then
$\operatorname{Eop}\left(\pi^{m} \alpha, R_{\rho}\right)$

$$
\approx \begin{cases}\emptyset, & \text { if } 2 \tau+1<\rho-2 m \\ \mathcal{N}\left(R_{\rho-2 m}\right) / \mathcal{O}_{\alpha}^{\times}, & \text {if } 2 \tau+1=\rho-2 m \\ \mathcal{N}\left(R_{\rho-2 m}\right) / \mathcal{O}_{\alpha}^{\times}-\mathcal{N}\left(R_{\rho-2 m+2}\right) / \mathcal{O}_{\alpha}^{\times}, & \text {if } 2 \tau+1>\rho-2 m\end{cases}
$$

$$
\text { b. } \mu(k(\alpha), L)=\infty
$$

$$
\mathcal{N}\left(R_{\rho-2 m}\right) / \mathcal{O}_{\alpha}^{\times}-\mathcal{N}\left(R_{\rho-2 m+2}\right) / \mathcal{O}_{\alpha}^{\times}, \quad \text { if } 2 t+2>\rho-2 m
$$

Proof. 1. $m>\nu$. By Corollary 4.4,
$\operatorname{Eop}\left(\pi^{m} \alpha, R_{2 \nu}\right)=\operatorname{Eop}\left(\pi^{m-\nu} \alpha, R_{0}\right) \approx R_{0}^{\times} /\left(\mathcal{O}+\mathcal{O} \pi^{m-\nu} g \alpha g^{-1}\right)^{\times}$
where $\pi^{m-\nu} g \alpha g^{-1} \in R_{0}-R_{2}$ for some $g \in B^{\times}$. By Lemma 4.3, $\operatorname{Eop}\left(\pi^{m} \alpha, R_{2 \nu+1}\right)=\operatorname{Eop}\left(\pi^{m-\nu} \alpha, R_{1}\right)$.

Since $R_{1}=R_{0} \cap \bar{R}_{0}, R_{1} \simeq\left(\begin{array}{cc}\mathcal{O} & \mathcal{O} \\ P & \mathcal{O}\end{array}\right)$, the number of R_{1}^{\times}equivalence classes of $\operatorname{Eop}\left(\pi^{m} \alpha, R_{1}\right)$ is 2 by 2.2 in [5]. Thus there exist g_{1} and g_{2} in B^{\times}such that $\operatorname{Eop}\left(\pi^{m} \alpha, R_{1}\right) \approx R_{1}^{\times} g_{1} K^{\times} / K^{\times} \cup R_{1}^{\times} g_{2} K^{\times} / K^{\times}$, where $g_{i} \pi^{m} \alpha g_{i}^{-1} \in R_{1}-R_{3}$ for each $i=1,2$. Since

$$
\begin{aligned}
R_{1}^{\times} g K^{\times} / K^{\times} & \approx R_{1}^{\times} g K^{\times} g^{-1} / g K^{\times} g^{-1} \approx R_{1}^{\times} / R_{1}^{\times} \cap g K^{\times} g^{-1} \\
& \approx R_{1}^{\times} /\left(\mathcal{O}+\mathcal{O} \pi^{m} g \alpha g^{-1}\right)^{\times},
\end{aligned}
$$

we have
$\operatorname{Eop}\left(\pi^{m} \alpha, R_{2 \nu+1}\right) \approx R_{1}^{\times} /\left(\mathcal{O}+\mathcal{O} \pi^{m-\nu} g_{1} \alpha g_{1}^{-1}\right)^{\times} \cup R_{1}^{\times} /\left(\mathcal{O}+\mathcal{O} \pi^{m-\nu} g_{2} \alpha g_{2}^{-1}\right)^{\times}$.
2. $m=\nu^{\bullet} \quad \operatorname{Eop}\left(\pi^{m} \alpha, R_{2 \nu}\right)=E\left(\alpha, R_{0}\right)-E\left(\alpha, R_{2}\right) \approx R_{0}^{\times} / \mathcal{O}_{\alpha}^{\times}-$ $\mathcal{N}\left(R_{2}\right)^{\times} / \mathcal{O}_{\alpha}^{\times}$. On the other hand,

$$
\operatorname{Eop}\left(\pi^{m} \alpha, R_{2 \nu+1}\right)=E\left(\alpha, R_{1}\right)-E\left(\alpha, R_{3}\right)
$$

$$
\approx \begin{cases}\emptyset, & \text { if } \mu=0, \\ E\left(\alpha, R_{1}\right)-E\left(\alpha, R_{1}\right) & \\ \mathcal{N}\left(R_{1}\right) / \mathcal{O}_{\alpha}^{\times}-\mathcal{N}\left(R_{3}\right) / \mathcal{O}_{\alpha}^{\times}, & \text {if } \mu \geq 2,\end{cases}
$$

where $g_{i} \alpha g_{i}^{-1} \in R_{1}-R_{3}$ for each $i=1,2$.
3. Assume that $m<\nu$.

$$
\begin{aligned}
& \operatorname{Eop}\left(\pi^{m} \alpha, R_{\rho}\right)=E\left(\pi^{m} \alpha, R_{\rho}\right)-E\left(\pi^{m-1} \alpha, R_{\rho}\right) \\
& =E\left(\alpha, R_{\rho-2 m}\right)-E\left(\alpha, R_{\rho-2 m+2}\right) \\
& \approx \begin{cases}\mathcal{N}\left(R_{\rho-2 m}\right) / \mathcal{O}_{\alpha}^{\times}, & \text {if } \mu(k(\alpha), L) \leq \rho-2 m+1, \\
\left(\mathcal{N}\left(R_{\rho-2 m}\right)-\mathcal{N}\left(R_{\rho-2 m+2}\right)\right) / \mathcal{O}_{\alpha}^{\times}, & \text {if } \mu(k(\alpha), L)>\rho-2 m+1 .\end{cases}
\end{aligned}
$$

We now consider $m \leq \nu$.
If $\mu(k(\alpha), L)=0$, it is \emptyset.
If $0<\mu(k(\alpha), L)<\infty$, then

$$
\begin{aligned}
& E\left(\alpha, R_{\rho-2 m}\right)-E\left(\alpha, R_{\rho-2 m+2}\right) \\
& \approx \begin{cases}\emptyset, & \text { if } 2 \tau+1<\rho-2 m, \\
\mathcal{N}\left(R_{\rho-2 m}\right) / \mathcal{O}_{\alpha}^{\times}, & \text {if } 2 \tau+1=\rho-2 m, \\
\left(\mathcal{N}\left(R_{\rho-2 m}\right)-\mathcal{N}\left(R_{\rho-2 m+2}\right)\right) / \mathcal{O}_{\alpha}^{\times}, & \text {if } 2 \tau+1>\rho-2 m .\end{cases}
\end{aligned}
$$

If $\mu=\infty, R_{\rho}^{\times} \backslash\left(\mathcal{N}\left(R_{\rho-2 m}\right)-\mathcal{N}\left(R_{\rho-2 m+2}\right) / \mathcal{O}_{\alpha}^{\times}\right.$.
Theorem 4.19. Assume $t(L)=2 e$. Let $\mu=\mu(L, k(\alpha))$. If $m \geq 1$ and $\nu \geq 2 m+1$, then the number of R_{ν}^{\times}equivalence classes of $\operatorname{Eop}\left(\alpha, R_{\nu}\right)$ is as follows:

1. $\mu=0$.

	$\operatorname{Eop}\left(\pi^{m} \alpha, R_{2 \nu}\right)$	$\operatorname{Eop}\left(\pi^{m} \alpha, R_{2 \nu+1}\right)$
$m \geq \nu+1$	$q^{\nu}+q^{\nu-1}$	$2 q^{\nu+1}$
$m=\nu$	$q^{\nu}+q^{\nu-1}$	0
$m<\nu$	0	0

2. $\mu=2 \tau+1$.

	$\operatorname{Eop}\left(\pi^{m} \alpha, R_{2 \nu}\right)$	$\operatorname{Eop}\left(\pi^{m} \alpha, R_{2 \nu+1}\right)$
$m \geq \nu+1$	$q^{\nu+1}+q^{\nu}$	$2 q^{\nu+1}$
$m=\nu$	q^{ν}	q^{ν}
$\tau>\nu-m, t=\nu-m>0$	q^{m+1}	$q^{m+1}+q^{m+t+1}-2 q^{m+t}$
$\tau>\nu-m, t>\nu-m>0$	q^{m+1}	q^{m+1}
$\tau>\nu-m=t+1$	$3 q^{m+t+1}-4 q^{m+t}$	$4 q^{m+t+1}-4 q^{m+t}$
$\tau>\nu-m>t+1$	$4 q^{m+t+1}-4 q^{m+t}$	$4 q^{m+t+1}-4 q^{m+t}$
$\tau=\nu-m>t+1$	$2 q^{m+t+1}$	$4 q^{m+t+1}-4 q^{m+t}$
$\tau=\nu-m=t+1$	q^{m+t}	$2 q^{m+t+1}$
$\tau=\nu-m<t+1$	q^{ν}	$q^{\nu+1}$
$\tau<\nu-m$	0	0

3. $\mu=2 t+2$.

	$\operatorname{Eop}\left(\pi^{m} \alpha, R_{2 \nu}\right)$	$\operatorname{Eop}\left(\pi^{m} \alpha, R_{2 \nu+1}\right)$
$m \geq \nu+1$	$q^{\nu+1}+q^{\nu}$	$2 q^{\nu+1}$
$m=\nu$	q^{ν}	q^{ν}
$t+1=\nu-m>0$	$q^{m+\nu}$	$q^{m+\nu+1}$
$t=\nu-m>0$	q^{m+1}	q^{m+1}
$\nu-m>t+1$	0	0

4. $\mu=\infty$.

	$\operatorname{Eop}\left(\pi^{m} \alpha, R_{2 \nu}\right)$	$\operatorname{Eop}\left(\pi^{m} \alpha, R_{2 \nu+1}\right)$
$m>\nu$	$q^{\nu+1}+q^{\nu}$	$2 q^{\nu+1}$
$m=\nu$	q^{ν}	q^{ν}
$t \geq \nu-m>0$	q^{m+1}	q^{m+1}
$\nu-m=t+1$	$3 q^{m+t+1}-4 q^{m+t}$	$4 q^{m+t+1}-4 q^{m+t}$
$\nu-m>t+1$	$4 q^{m+t+1}-4 q^{m+t}$	$4 q^{m+t+1}-4 q^{m+t}$

Proof. By Theorem 4.20 and Lemma 4.18, we are able to compute the following procedures.

1. $m>\nu$.

$$
\left|R_{2 \nu}^{\times} \backslash R_{0}^{\times} /\left(\mathcal{O}+\mathcal{O} \pi^{m-\nu} g \alpha g^{-1}\right)^{\times}\right|=q^{\nu-1}(q+1) \text { and } \mid R_{2 \nu+1}^{\times} \backslash
$$

$$
R_{1}^{\times} /\left(\mathcal{O}+\mathcal{O} \pi^{m-\nu} g_{1} \alpha g_{1}^{-1}\right)^{\times}\left|+\left|R_{2 \nu+1}^{\times} \backslash R_{1}^{\times} /\left(\mathcal{O}+\mathcal{O} \pi^{m-\nu} g_{2} \alpha g_{2}^{-1}\right)^{\times}\right|=\right.
$$

$$
2 q^{\nu-1} \cdot q
$$

2. $m=\nu$.

$$
\left|R_{2 \nu}^{\times} \backslash R_{0}^{\times} / \mathcal{O}_{\alpha}^{\times}\right|=q^{\nu-1}(q+1) \text { for } \mu=0 \text { and } \mid R_{2 \nu}^{\times} \backslash \mathcal{N}\left(R_{0}\right) / \mathcal{O}_{\alpha}^{\times}-
$$ $R_{2 \nu}^{\times} \backslash \mathcal{N}\left(R_{2}\right) / \mathcal{O}_{\alpha}^{\times} \mid=q^{\nu-1}\left(n_{0}^{*}+n_{1}^{*}\right)=q^{\nu}$ for $\mu(k(\alpha), L) \geq 3$. Moreover, $\left|R_{2 \nu+1}^{\times} \backslash \mathcal{N}\left(R_{1}\right) / \mathcal{O}_{\alpha}^{\times}-R_{2 \nu+1}^{\times} \backslash \mathcal{N}\left(R_{3}\right) / \mathcal{O}_{\alpha}^{\times}\right|=q^{\nu-1}\left(n_{1}^{*}+n_{2}^{*}\right)=$ q^{ν} for $\mu(k(\alpha), L) \geq 3$.

3. $m<\nu$.

We divide it into four different cases.
(a) $\mu=0$. It is 0 by Definition 4 .
(b) $\mu(k(\alpha), L)=2 \tau+1$.

We need to compute

$$
\begin{aligned}
& \left|R_{\rho} \backslash \mathcal{N}\left(R_{\rho-2 m}\right) / \mathcal{O}_{\alpha}^{\times}-R_{\rho} \backslash \mathcal{N}\left(R_{\rho-2 m+2}\right) / \mathcal{O}_{\alpha}^{\times}\right| \\
= & \left|R_{\rho} \backslash\left(\mathcal{N}^{*}\left(R_{\rho-2 m}\right) \cup \mathcal{N}^{*}\left(R_{\rho-2 m+1}\right)\right) / \mathcal{O}_{\alpha}^{\times}\right|
\end{aligned}
$$

a. $\tau>\nu-m$, By (4.3) and Lemma 4.18,

$$
\begin{aligned}
& q^{m} \cdot\left(n_{\rho-2 m}^{*}+n_{\rho-2 m+1}^{*}\right) \\
& =q^{m} \cdot \begin{cases}0+q & \text { if } \rho-2 m=0 \\
q+0 & \text { if } \rho-2 m=1 \\
0+q & \text { if } 2 \leq \rho-2 m \leq 2 t \\
q+q^{t+1}-2 q^{t} & \text { if } \rho-2 m=2 t+1 \\
3 q^{t+1}-4 q^{t} & \text { if } \rho-2 m=2 t+2, \\
4 q^{t+1}-4 q^{t} & \text { if } \rho-2 m>2 t+2\end{cases}
\end{aligned}
$$

b. $\tau=\nu-m$ By (4.3),

$$
\left.\begin{array}{rl}
& \left|R_{\rho}^{\times} \backslash \mathcal{N}\left(R_{\rho-2 m}\right) / \mathcal{O}_{\alpha}^{\times}\right| \\
= & \left\{\begin{array}{ll}
\left|R_{\rho}^{\times} \backslash R_{\left[\frac{1}{2} \rho\right]-m}^{\times} / \mathcal{O}_{\alpha}^{\times}\right| & \text {if } \rho-2 m \leq 2 t+2 \\
R_{\rho}^{\times} \backslash R_{\rho-m-t-1}^{\times} & \cup R_{\rho-m-t-1}^{\times} / \mathcal{O}_{\alpha}^{\times} \mid
\end{array} \quad \text { if } \rho-2 m>2 t+2\right.
\end{array}\right\} \begin{array}{ll}
q+1 & \text { if } \rho-2 m=0, \\
q+1 & \text { if } \rho-2 m=1, \\
q^{m} \cdot\left[\frac{\rho+1}{2}\right]-m & \text { if } 2 \leq \rho-2 m \leq 2 t+2, \\
2 q^{t+1} & \text { if } \rho-2 m \geq 2 t+3 .
\end{array}
$$

c. $\tau<\nu-m,(4-3)$ is 0 .
(c) $\mu(L, k(\alpha))=2 t+2$. By Lemma 4.18 ,

$$
\begin{aligned}
& \begin{cases}\emptyset & \text { if } 2 t+2<\rho-2 m, \\
R_{\rho}^{\times} \backslash\left(\mathcal{N}\left(R_{\rho-2 m}\right) / \mathcal{O}_{\alpha}^{\times},\right. & \text {if } 2 t+2=\rho-2 m, \\
R_{\rho}^{\times} \backslash\left(\mathcal{N}\left(R_{\rho-2 m}\right)-\mathcal{N}\left(R_{\rho-2 m+2}\right)\right) / \mathcal{O}_{\alpha}^{\times} & \text {if } 2 t+2>\rho-2 m,\end{cases} \\
&= \begin{cases}\emptyset, & \text { if } 2 t+2<\rho-2 m, \\
R_{\rho}^{\times} \backslash R_{\frac{\rho-2 m}{2}}^{\times} / \mathcal{O}_{\alpha}^{\times}, & \text {if } 2 t+2=\rho-2 m, \\
q^{m} \cdot\left(n_{\rho-2 m}^{*}+n_{\rho-2 m+1}^{*}\right), & \text { if } 2 t+2>\rho-2 m .\end{cases} \\
&= \begin{cases}\emptyset, & \text { if } 2 t+2<\rho-2 m, \\
q^{m+\left[\frac{\rho+1}{2}\right]}, & \text { if } 2 t+2=\rho-2 m, \\
q^{m+1}, & \text { if } 2 t+2>\rho-2 m .\end{cases} \\
&= \begin{cases}(\mathrm{d}) \mu(k(\alpha), L)=\infty . & \text { if } \rho-2 m \geq 2 t+3 \\
q^{\times} \backslash\left(\mathcal{N}\left(R_{\rho-2 m}\right)-\mathcal{N}\left(R_{\rho-2 m+2}\right)\right) / \mathcal{O}_{\alpha}^{\times}=q^{m} \cdot\left(n_{\rho-2 m}^{*}+n_{\rho-2 m+1}^{*}\right) \\
q^{m} \cdot\left(3 q^{t+1}-4 q^{t}\right), & \text { if } \rho-2 m=2 t+2 \\
q^{m} \cdot q, & \text { if } \rho-2 m=2 t+1\end{cases} \\
&\left.R^{m+1}-2 q^{t}\right), \text { if } \rho-2 m \leq 2 t .
\end{aligned}
$$

References

[1] J. Brzezinski, On automorphisms of quaternion orders J. reine angew. Math. 403(1990) 166-186
[2] J. Brzezinski, On embedding numbers into quaternion orders Comment. Math. Helvetici 66(1991) 302-318.
[3] M. Deuring, Die An zahl der Typen von Maximalordnungen einer definitn Quaternionalgebra mit primer Grundzahl. Jber. Deutsch. Math. Verein. Vol.54, pp.24-41, 1950.
[4] M. Eichler, The basis problem for modular forms and the traces of Hecke operators. Springer-Verlag, Lecture Notes in Math ., Vol.320, pp.75-151, 1972.
[5] H. Hijikata, Explicit formula of the traces of the Hecke operators for $\Gamma_{0}(N)$, J. Math. Soc. Japan, Vol.26, pp. 56-82, 1974.
[6] H. Hijikata, A. Pizer and T. Shemanske , Orders in Quaternion Algebras, J. Reine angew Math., Volbf 394 1989, pp.59-106
[7] S. Jun, The class number of orders in a quaternion algebra over a dyadic local field Bull. KMS, Vol. 42, No. 3 pp. 639-652, 2005.
[8] S. Jun, The Mass formula of orders over a dyadic local field Commun. KMS, Vol. 20, No. 2 pp.231-238
[9] S. Jun, On the certain Primitive orders J. Korean Math. Soc. Vol. 34, No. 4, pp.791-807, 1997.
[10] A. Pizer, On the arithmetic of Quaternion algebras II J. Math. Soc. Japan Vol. 28 , pp.676-698, 1976.
[11] A. Pizer, The action of the Canonical involution on Modular forms of weigh 2 on $\Gamma_{0}(N)$ Math. Ann. Vol.226, pp.99-116, 1977.
[12] A. Pizer, An Algorithm for computing modular forms on $\Gamma_{0}(N)$ J. Algebra Vol. 64 , pp. 340-390, 1980.
[13] I. Reiner, Maximal orders Academic Press , 1975.
[14] A. Weil, Basic number theory Berlin, Hedelberg, New York: Springer 1967.

Division of Mathematics and Computer sicience
Konkuk University,
Choongju, Choongbuk, 380-151, Korea
E-mail: sjun@kku.ac.kr
Department of Mathematics education
Wonkwang University,
Iksan, Jeonbuk, 540-749, Korea
E-mail: iki@wonkwang.ac.kr

[^0]: Received July 28, 2009. Accepted December 8, 2009.
 2000 Mathematics Subject Classification: 11R11.
 Key words and phrases: order, quaternion algebra, normalizer, optimal embedding.

 This paper was supported by Konkuk University in 2009.

