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UNIQUENESS OF TOEPLITZ OPERATOR IN THE
COMPLEX PLANE

YOUNG-BOK CHUNG

Abstract. We prove using the Szegő kernel and the Garabedian
kernel that a Toeplitz operator on the boundary of C∞ smoothly
bounded domain associated to a smooth symbol vanishes only when
the symbol vanishes identically. This gives a generalization of pre-
vious results on the unit disk to more general domains in the plane.

1. Introduction

In this paper, we study on uniqueness of Toeplitz operators associated

to a C∞ smooth symbol and a C∞ smoothly bounded domain in the

plane. It is deeply related to commuting Toeplitz operators which are

dealt with zero-product problems mostly in the polydisks in Cn. (See [9]

and [10]). Using a formula relating classical kernel functions in potential

theory, we prove that vanishing property of Toeplitz operator implies

vanishing of associated symbols. This is a kind of generalization of

previous results to more general domains in the plane.

2. Preliminaries and Notations

In this section, we review briefly on some preliminaries about the

classical kernel functions and their relations.
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Let Ω be a bounded finitely connected domain in the plane with C∞

smooth boundary. Let’s suppose that Ω is n-connected. Let γj , j =

1, · · · , n, denote the n non-intersecting C∞ simple closed curves defin-

ing the boundary bΩ of Ω. We assume that the boundary curve γj is

parameterized in the standard sense by zj(t), 0 ≤ t ≤ 1. Let T (z) be

the C∞ function defined on bΩ by the complex unit tangent vector in

the direction of the standard orientation. We shall let L2(bΩ) denote

the space of complex valued functions on bΩ that are square integrable

with respect to arc length measure ds and let L2(Ω) denote the space of

complex valued functions on Ω that are square integrable with respect

to Lebesgue area measure dA. The Hardy space of functions in L2(bΩ)

that are the L2 boundary values of holomorphic functions on Ω shall be

written H2(bΩ).

The orthogonal projection of L2(bΩ) onto H2(bΩ) with respect to the

inner product

< u, v >bΩ=
∫

bΩ
u v̄ ds

is called the Szegő projection denoted by P . The Szegő kernel denoted

by S(z, w) is the kernel for P . It is well known that S(z, w) extends to

the boundary to be in C∞ (
(Ω̄× Ω̄) \ {(z, z) : z ∈ bΩ}).

And it is a holomorphic function of z and an antiholomorphic function

of w on Ω× Ω. We note that S(z, z) is real and positive for z ∈ Ω and

S(z, w) = S(w, z). The Garabedian kernel L(z, w) is the kernel for the

orthogonal projection P⊥ of L2(bΩ) onto H2(bΩ)⊥ defined by

(2.1) L(z, w) = i S(z, w) T (z), for (z, w) ∈ bΩ× Ω,

which is heavily used in the proof of the main theorem in the next

section.

The Garabedian kernel satisfies the identity

(2.2) L(z, w) =
1
2π

1
z − w

− iSP (CwT )(z),



Uniqueness of Toeplitz operator in the complex plane 635

where

Cw(ζ) =
1

2πi

T (ζ)
ζ − w

, ζ ∈ bΩ, w ∈ Ω

is the kernel for the Cauchy transform defining the Cauchy integral. For

fixed w ∈ Ω, L(z, w) is a holomorphic function of z on Ω \ {w} with

a simple pole at w with residue 1/2π. Furthermore, L(z, w) extends

to be in C∞ (
(Ω̄× Ω̄) \ {(z, z) : z ∈ Ω̄}). We also note that L(w, z) =

−L(z, w) and L(z, w) is zero-free for all (z, w) ∈ Ω̄×Ω with z 6= w. All

of these properties can be found in Bell’s book[2]. See also [11].

3. Main Results

Let Ω be a bounded finitely connected domain in the plane with C∞

smooth boundary and let α ∈ C∞(bΩ). We will without of generality

think of the function α as a function α ∈ C∞(Ω) by extending to Ω.

M. Schiffer[8](See also [1]) proved the following orthogonal decompo-

sition for α.

Lemma 3.1. Suppose that Ω is a bounded domain in the plane with

C∞ smooth boundary. Let T be a unit tangent vector function on the

boundary of Ω and let P be the Szegő projection associated to Ω.

If u is a function in L2(bΩ) then it has an orthogonal decomposition

u = P (u) + T P (u T ).

We also need a boundary regularity of the Szegő projection as follows.

(See [3].)

Lemma 3.2. Suppose that Ω is a bounded domain in the plane with

C∞ smooth boundary. and suppose P is the Szegő projection associated

to Ω. Then P maps C∞(bΩ) into C∞(bΩ).

Now let u be equal to α in Lemma 3.1. Then we have

(3.1) α = P (α) + T P (α T ),
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where P (α) ∈ H2(bΩ) and P (α T ) ∈ H2(bΩ)⊥. In particular, by bound-

ary regularity of the Szegő projection(Lemma 3.2), the functions P (α)

and P (α T ) are in C∞(Ω). (See [2].)

The Toeplitz operator Tα associated to the symbol α is defined by

Tα(f) = P (αf)

as a bounded linear operator on the Hardy space H2(bΩ). As mentioned

in the Introduction, we want to find a condition for vanishing of the

Toeplitz operator. Suppose that α is fixed and suppose that Tα vanishes

identically on H2(bΩ).

Let a ∈ Ω be fixed. Then

P (αS(·, a)) = 0.

It follows from (3.1) that

α(z)S(z, a) = T (z) P
(
α S(·, a) T

)
(z), z ∈ bΩ.

Note that the T is a unit vector and hence we have from (2.1) that

(3.2) iα(z)L(z, a) = P
(
α S(·, a) T

)
(z).

Notice it is well known that the Szegő projection P maps C∞(bΩ)

into itself and the Garabedian kernel L(z, a) is a meromorphic function

of z on Ω with a single simple pole at a.

Thus it follows easily that the identity (3.2) holds for z ∈ Ω and by

letting z → a, we have

α(a) = 0

which proves α vanishes identically on Ω because a was arbitrary.

Theorem 3.3. Ω is a bounded domain in the plane with C∞ simple

closed curves. Let α ∈ C∞(bΩ). Suppose that the Toeplitz operator Tα

associated to α vanishes on H2(bΩ).

Then the symbol α vanishes identically.
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