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요  약 본 논문에서 이미지 선명도 함수의 최적화에 의해 융합 법칙이 유도되는 새로운 이미지 융합 접근법을 제안
한다. 선명도 함수에 비교하여 소스 이미지로부터 최적 블록을 통계적으로 선택하기 위하여 유전자 알고리듬이 사용
되었다. 변이 연산에 의해 만들어진 유전인자들의  포격을 통해서 찾아진 재능 유전 인자를 갖는 새로운 네스티드 유
전자 알고리듬을 설계하였고 구현하였다. 알고리듬의 수렴은 해석적으로, 실험적으로 그리고 통계적으로 3개의 테스
트 함수를 사용하여 표준 GA와 비교하였다. 결과의 GA는 변수와 집단 크기에 불변이며, 최소 20 개체이면 시험에 
충분하다는 것을 알 수 있었다. 융합 응용에서 모집단내의 각 개체는 입력 블록을 나타내는 유한한 이산 값을 갖는 
개체이다. 이미지 융합 실험에 제안한 기법의 성능은  출력 품질 척도로 상호 정보량(MI)으로 특징지워진다. 제안한 
방법은 C=2 입력 이미지에 대해 테스트되었다. 제안한 방법의  실험 결과는 현재의 다중 초점 이미지 융합 기법에 
대한 실제적이고 매력적인 대안이 됨을 보여준다.

Abstract  We propose in this paper a novel approach to image fusion in which the fusion rule is guided by 
optimizing an image clarity function. A Genetic Algorithm is used to stochastically select, comparative to the 
clarity function, the optimum block from among the source images. A novel nested Genetic Algorithm with 
gifted individuals found through bombardment of genes by the mutation operator is designed and implemented. 
Convergence of the algorithm is analytically and empirically examined and statistically compared (MANOVA) 
with the canonical GA using 3 test functions commonly used in the GA literature. The resulting GA is 
invariant to parameters and population size, and a minimal size of 20 individuals is found to be sufficient in 
the tests. In the fusion application, each individual in the population is a finite sequence of discrete values that 
represent input blocks. Performance of the proposed technique applied to image fusion experiments, is 
characterized in terms of Mutual Information (MI) as the output quality measure. The method is tested with 
C=2 input images. The results of the proposed scheme indicate a practical and attractive alternative to current 
multi-focus image fusion techniques. 

Key Words : Image Fusion, Multi-focus, Genetic Algorithm, Nested Genetic Algorithm, Gifted Genes, GA 
Convergence.
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Ⅰ. INTRODUCTION
There are many reasons to fuse images of the same

scene, and over the years these operations have

provided useful ways of enhancing contexts in order to

warrant subsequent analyses. In [1] for instance, infra

red and visible images are fused to see associations

between objects that are only sensible in one of the
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spectral bands.

While advances in hardware sensor designs may

have provided significant improvements in image

acquisition and scene imagery, the need for

post-processing techniques remains because of the

constant presence of “noise” in anytarget environment.

For example, high-sensitive ISO ratings, which are

common in today’s “point-and-shoot” CCD cameras

often result in crisp and sharp results but in prolonged

exposure introduces grain-like noise artifacts.

In some cases, images may have been acquired

out-of-focus and the real-time scenario prevents the

human observer from recapturing the scene. For

instance, under security and surveillance situations,

post-processing a region-of-interest may be needed in

a time-critical situation in order for the human

observer to make a decision. Hence, improving the

would-be image by physically interfering with the

scene or removing occlusions may not be practical and

possible.

For face recognition, fusion techniques may be

employed to “cancel” out the noise in each of the source

face images in order to produce a composite face image

that is clearer and richer in feature. This will aid the

recognition algorithm since the face is more defined. In

[2], interestingly, a single face image is fused with its

own features. The goal is to improve the context of the

face data and increase the information that will be

provided to the recognition system.

In this paper, we propose a novel approach to image

fusion using evolutionary operators. The fusion rule is

stochastic in that the system randomly picks from

among the corresponding input blocks those which will

compose the fused image. The motivation stems from

factual bases, and empirical results suggesting that

image clarity measures behave as monotonic functions

of the degree of blurring. Therefore, image fusion can

be viewed as an optimization task to find the block

combinations that maximize these clarity measures.

The novelty of the proposed scheme is twofold.

First, the method proposed is the first image fusion

technique to apply Genetic Algorithms (GA). Second,

the scheme is the first among GA-driven optimization

techniques to innovatively use nested GAs – an outer

GA, and an inner smaller GA. The main goal is to

achieve a simple convergence model that provides

prediction of the number of generations required to

evolve into the global solution.

The main contributions of this paper are: a Genetic

Algorithm framework under which image fusion

systems can be built; and a proposed experimental

hybridization scheme that uses two GAs, one nested

with the other. Section 2 provides an overview of

image fusion problem followed by a brief survey of

literature. Section 3 discusses details of the GA-based

image fusion scheme following introduction of relevant

Genetic Algorithm concepts, and analytical treatments

of its dynamic behavior. Results of the proposed

method are presented and described in Section 4, and

Section 5 is the concluding part.

Ⅱ. BACKGROUND OF IMAGE FUSION
The basic requirement to image fusion is for the

fused image to be "visually pleasing" [3]. The result of

fusion should preserve all relevant information of the

input images, eliminating redundancy and noise [4].

Image Pyramids are among the pioneering

representations of image data for fusion systems. An

image pyramid is a set of lowpass or bandpass copies

of an image, each copy representing pattern information

of a varying scale. Falling under this class of fusion

methods are: Laplacian pyramid, Ratio of Low Pass

Pyramid, Contrast Pyramid, Filter-Subtract-decimate

(FSD) Pyramid, Morphological Pyramid, and Gradient

Pyramid. These methods are only efficient for specific

types of applications and are limited performance [5].

An alternative to the pyramid schemes are Discrete

Wavelet Transforms (DWT), but due to subsampling,

results of DWT fusion are shift-variant and this

characteristic often leads to misalignment among
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source images. On the other hand, the over-complete

signal representation [4] obtained from the undecimated

form of the dyadic filter tree results into an increase in

computation requirements and high redundancy in the

output information, making subsequent processing also

expensive [6].

P. Hill, et. al. [7] tackled the shift-variation problem

of DWT, and the redundancy issue with Shift Invariant

DWT (SIDWT) by proposing the use of Dual Tree

Complex Wavelet Transform (DT-DWT). The

DT-CWT is a reduction from the over-complete nature

of SIDWT but also suffers from an increase in memory

and computational cost. The magnitudes of complex

wavelet coefficients of both images are combined based

on Maximum Selection (MS) fusion rule, before the

inverse transform is produced.

The method of Z. Zhang and R. Blum [8] is also an

example of the use of Discrete Wavelet Transforms

(DWT). In this case, however, the proposed scheme

applies region-based fusion depending on the activity

level of a region. The activity level of each region is

the average of the absolute value of the high frequency

band wavelet coefficients. Some heuristics are applied

to the regions in both images and a binary decision

map is created whose pixel P(i,j) is "1" if the wavelet

coefficients from the first image are to be taken as the

output image, and "0" if, otherwise.

S. Li, et. al. [9] applied a Radial Basis Function

Network (RBFN) in the fusion scheme. Their idea was

to treat every decision in fusing any two MxN image

blocks as a simple classification problem. In the

training stage, the NN is presented with sets of image

features (Spatial Frequency(SF), Visibility, Edge(VE))

along with corresponding a priori "decisions". Thus, a

generalization is achieved from the known collection of

image sets, clarity measures, and associated decisions.

S. Li and his colleagues reported that both RBFN and

PNN are superior to DWT terms of RMSE, and Mutual

Information (MI).

Pulse-coupled neural networks (PCNN) are

proposed in [10, 11] taking total pulse of its pixel as

input to the MS (maximum selection) fusion rule.

As implied earlier in this section, other than the

intermediate representation of the input images such as

those discussed, a key issue in the design of image

fusion systems is the choice of fusion rule φ. Maximum

Selection(MS) schemes imply picks the block (or

coefficient, in the case of pixel-based techniques) in

each subband with the largest magnitude. This rule

takes into account the fact that salient features in an

image are usually represented by rapidly-varying

intensities. Generally, the main disadvantage of this

rule, especially for conventional DWT-based fusion is

its high sensitivity to noise and the formation of

ringing artifacts and blurring effects in the fused

image.

Generally, the fusion method proposed in this paper

is more akin to MS, than to the WA scheme. However,

the main difference lies in the process of selecting the

best image for the current block being formed in the

fused image. Specifically, a GA is used to stochastically

choose those blocks for which the clarity function

achieves optimum measure.

Ⅲ. GENETIC ALGORITHM and IMAGE 
FUSION

1. The Canonical Genetic Algorithm 
Genetic Algorithm was based on natural biological

principles governing cells of all living organisms,

including humans. Organisms are made up of cells,

each consisting of the same set of chromosomes, which

are strings of DNA that serve as a model for the whole

organism.

In GA optimization, a chromosome or individual is

composed of strings of DNA called genes, each of

which encodes a particular part of the solution, for

example, the (j,k)th block of fused image Z. Many

studies on GA optimization focus on optimization such

as scheduling problems. Often, many resources of a

specific type are available, see [13-16] for examples.
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In searching for the solution, a population of N

individuals is evolved at every iteration step

(generation or epoch). First, an initial population is

created or initialized which constitutes random

permutations of L binary digits (or some finite

alphabets when binary encoding is not used). At

generation t=0, the initial individuals are subjected to

crossover and mutation under some predefined

probabilities  , and  , respectively. A fitness

evaluation is then conducted on the each new individual

 using some objective function   like SF or

RMSE in the case of image fusion. Next, each

individual  is ranked based on its fitness measure,

and assigned survival probability proportional to its

fitness in the population, or more concisely

  


  



 

 
(1)

where N is the population size, and   is

individual  ’s probability of surviving to the next

generation. This process can be summarized as follows:

i. Create an initial population.

ii. Randomly select pairs of individuals (parents) and

with probability  (usually 0.7 to 0.9) perform

crossover to obtain children (new individuals).

iii. With probability  (usually 0.01) perform

mutation.

iv. Determine the fitness and   of each

individual and calculate survival probability

  .

v. Perform selection.

vi. Go back to (ii.) until some stopping criterion is

met.

2. Image Fusion As an Optimization Problem  
Image fusion can be viewed as a form of an

optimization problem. Given C registered input images,

the goal of the system is to produce an output image

which is essentially a combination of blocks

from the inputs, such that the resulting image clarity

measure  is at maximum or minimum. For

instance, the fused image can be maximized in terms of

SF (Spatial Frequency, as in [9], or minimized in terms

of the RMSE (Root Mean Squared Error).

We define the C input images I1(p,q), I2(p,q) ... IC

(p,q) of P x Q blocks each. A region-based fusion

system operates with each b x b distinct block B in

I i(p,q) for all i in [1, C] as  , where k=1…; l=

1…. The system may then produce an output image Z

defined as:

 
  




  



  (2)

subject to
arg


max for I=1,...,C where δ(k)

is the Kronecker delta function and · is a general

image clarity function.

Note that · in the expression denotes the total

measure of image clarity that incorporates the

constraints.

As introduced in Section 2, the choice of the optimal

B(b,b) is conventionally approached by invoking a

simple rule φ, one of which is the maximum selection

(MS) scheme. In this method, a

particular  that yields maximum value for

f(.) in Eq. (2) from among the C corresponding blocks

is chosen as a block in the output Z. The rule is applied

either directly at the image pixels (spatial level) or at

its wavelet transform coefficients, depending on the

image representation domain (e.g. frequency or spatial).

Thus, in the MS scheme, the (k-th, l-th) block of Z, for

i= 1,..,C is expressed as:

 
arg


max (3)

On the other hand, the Weighted Average (WA)

scheme [17] reconstructs a region in Z as a weighted

average between the coefficients of the input blocks.
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The reconstructed region’ coefficient is calculated from

the normalized correlation between the input images’

subbands over the relevant local regions. And finally,

Window Based Verification (WBV) scheme [18] uses a

majority filter that chooses an input block  if

most of the blocks in the neighborhood of Z(k,l) are

taken from input image I i.

Both the WA and WBV can also be readily applied

to spatial levels of input images by directly operating

on the image blocks as represented by some image

features, instead of its wavelet coefficients.

MS and the fusion rules above imply a result that is

optimal relative to the clarity measure “perceived” by

· . However, a limitation arises when 2 or more

image features are used as measure in an attempt to

closely mimic a more HVS sensitive result. For

instance, aside from calculating the spatial frequency

[3], edge quantities and visibility metrics must be

considered along with other characteristics that are

associated with image quality. In this case, the use of

such relational operators among the input blocks is no

longer plausible. For one, it is obvious that the

distribution of image blocks under these measures will

be multi-dimensional in nature as opposed to the

simpler case with single metric. Thus, with more than

two image clarity functions, the quantities representing

each input image block will be a point in some

D-dimensional metrics-space and there might be

complex, overlapping, non-linear boundaries between

the distributions. Hence, the identification of the

optimum block might not be accurately made through

simple relational comparisons alone.

3. Hybrid Genetic Algorithms  
The main difficulty in using GA is its lack of simple

and concrete convergence proof. This can be attributed

to the complex nature of the population dynamics and

the randomness of the procedure (i.e. it is very unlikely

for one pared-optimal solution to be the outcome of

running a GA twice). Particularly, epitasis refers to the

complex interactions among GA operators such as

crossover and mutation that are difficult to model due

to random individual behaviors in this highly-dynamic

system. Many have attempted to use tools such as

Markov chains and Schemas in modeling these

complex systems to characterize convergence,

parameter calibrations, population sizing, and other

issues. Many, however, have resorted into hybridization

[19] in order to encapsulate the GA into another search

technique that is more tractable, well-established, and

has simpler analytical properties. Such techniques

include Simulated Annealing, Random Walk,

Lamarckian Learning, Gradient ascent/descent, among

others.

For example, in [19] is a hybrid GA that runs inside

a simulated annealing algorithm. The GA has a

Boltzmann acceptance function, and an annealing

schedule to guarantee convergence. The method was

applied to solve the classical 30-city Traveling

Salesman Problem (TSP). Mutation rate is constant at

1.0 which means that all individuals are mutated. One

unique feature of this scheme is its varying mutation

amplitude, that is, the length of substring that is

mutated changes proportionally to the system

temperature T (simulated annealing parameter).

4. Nested GA and Gifted Genes  
While many have ventured into hybridizing GA with

such methods as gradient-descent, ant colony, and

simulated annealing, to the best of our knowledge, no

one have tried a scheme of having a smaller modified

(inner) GA running within a bigger “other” (outer) GA.

The outer GA, conceived in this way, is designed to

work as a simple genetic algorithm, most probably a

canonical one.

On the other hand, the smaller GA is simply

composed of the 2 best individuals in a current

generation of the outer GA. It is desired that the

smaller GA execute in so small an amount of time so

as to have a negligible effect on the overall time

complexity of the whole algorithm.

The idea is to tweak the bits or genes of these two
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individuals (or parents) by repeatedly bombarding them

with mutation operator (i.e. unusually high  ),

without conducting any crossover, so as to produce an

individual that is far better in fitness. We will call this

new individual the “gifted child” or one that has “gifted

genes” This process has to be accomplished before the

next generation is started, that is, before going back to

step (ii). in Section 3.1 above.

One advantage this scheme can offer is that, with a

very small population, the dynamics can be reduced

significantly and analytical properties should be equally

simpler. By using only mutation, we are taking

advantage of this operator to provide higher sampling

rate of the hyperplanes and schemas. Also, expensive

processing tasks normally consumed in implementing

crossover and selection such as ranking, O(n) fitness

calculations, calculation of crossover points, and the

like are eliminated. With only 2 individuals in the

population, processing time is significantly reduced in

the small GA thereby making our desire (and

assumption) obtainable and valid.

The gifted individual found by the smaller GA will

then be inserted into the population pool of the outer

GA. The outer GA can then simply take the “gifted

individual” found in the aggressive smaller GA as the

baseline for its own search. Thus, the search for the

gifted genes can be considered a form of local

hill-climbing.

We define a scaling function  that controls how

much more fit the “gifted individual” has to be

compared to its parents. It will become clear that  is

comparable to the rate of descent in gradient-descent

techniques. We will allow this function to

monotonically decrease per generation. Thus, we can

visualize the effect that this smaller GA has on the

outer GA, that is, as a hill-climbing (or rolling) scheme

that “forces” the outer GA to have converge to the

solution in a rate driven by the inner A. The revised

GA is summarized as follows:

OUTER GA (CANONICAL)

i. Create an initial population.

ii. Randomly select pairs of individuals (parents) and

with probability Pc = 0.8, perform one-point

crossover to obtain children (new individuals).

iii. With probability Pm = 0.01, perform mutation.

iv. Determine the fitness and   of each

individual.

INNER GA (SMALL)

a. Take the 2 best Xis as an initial population.

b. Do not perform any crossover.

c. Set elite count to 1, making sure that the best

individual in the 2, gets a 100% chance to survive.

d. With high probability pm = 1.0, perform mutation.

e. Go back to (b.) until a gifted individual xi is found

so that

  ≤  (4)

where  is the best individual between the 2 in

(a.)

f. Insert xi into the population pool of the outer GA

and update the population fitness values.

v. Perform Stochastic Universal Sampling (SUS)

selection

vi. Go back to (ii.) until some stopping criterion is

met.

It turns out that a simple exponential decay function

has good properties for ω. In particular, if

  (5)

where t is the generation time index, then the outer

GA will be “forced”to exhibit, an exponentially

decaying (note that we are minimizing) quantity, that

is, the best population fitness. The upper bound

therefore of the convergence time is an exponential

decay time complexity. Through the exponentially

decaying ω, we are also able to satisfy a desirable
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searching property: wider steps in the global search,

which makes the objective function vanish more

quickly; and smaller steps as it settles at the local basin

where the global best is located.

5. Image Fusion via Nested GA with Gifted 
Genes Chromosome Encoding 

Central to any genetic algorithm design is the

structure that encodes the candidate solutions. In the

case of the problem at hand, we are referring to the

layout of chromosomes or individuals that will

comprise the population. These chromosomes encode

the actual output image at any generation or epoch. It

is therefore important that transforming (mapping)

between these encoded values, and the actual image

output be simple and straightforward. Figure 1 below

illustrates the format of individuals proposed in this

paper. The length of the chromosome, discussed next,

is equal to the number of columns in the blocked image.

X

1 2 2 1 2 2 1 1 1 2

1 ... Q

Figure 1. An individual (X) representing a 
sequence of image blocks in the 
output image. 

Figure 2. The Image Fusion scheme proposed. 

Figure 2 shows the overall fusion scheme proposed.

First, the input images are divided into P x Q blocks

of b x b pixels. Thus, the size of each chromosome is

P x Q of binary strings. To simplify the process, we

operate on each 1 x Q row of blocks for the output

image (row-by-row), instead of the whole matrix of

blocks simultaneously (batch). Thus, for each 1 x Q

row of blocks, N individuals were used and evolved up

to T generations in the outer GA. This process is

repeated for P times, one for each row of blocks.

For N input images of P x Q blocks each, there are

NQ distinct individuals possible for each row of blocks.

Note that without taking each row one by one, the

number of distinct individuals or solutions in the search

space is N PxQ. Thus, with 256x256 image inputs,

blocks of size 8x8 (b=8), and N=2 inputs, there are 232

= 4,294,967,296 solutions for the row-by-row method,

a significant search space reduction from 2
1024
= 1.8 x

10
308
points in the hyperspace for the batch method!

가. Objective Function, Fitness Evaluation, and 
Output Quality Measures

Theoretically, we can minimize any image function

such as the Root Mean Squared Error (RMSE) defined

as:

SE 



 

  




  



  (6)

where R is the reference (ground truth) image, Z is

the fused image, each of size MxN pixels. Or, we may

maximize measures such as EOL (Energy Of image

Laplacian), SF (Spatial Frequency), and MI (Mutual

Information) whose equations are given below:

21 1

1 1 1 1

( , ) ( 2, 2)
b b

ikl ikl
x y u v

B x u y v K u vEOL
= = =- =-

+ + + +æ ö
ç ÷
è ø

= å å å å
(7)

where K is the 3x3 mask
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4 20 4
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    (8)

where

2
2

1 2

1
( ( , ) ( , 1))

b b

i j

RF B i j B i j
b = =

 = - -    å å

and

2
2

1 2

1
( ( , ) ( 1, ))

b b

j i

CF B i j B i j
b = =

 = - -å å

 (9)

where H(I) is the entropy of an image I, and

H(U,V) is the joint entropy of images U and V. Image

Entropy H(I) is given by

 
  



log (10)

where L = 255 in a grayscale image, and p(i) is the

probability estimate of gray level i in the image.

However, in this paper, we make use of MI and

RMSE as qualitative metrics of the fusion results. In

the results that follow, the fusion scheme proposed is

implemented for minimizing RMSE, and for maximizing

SF. RMSE is minimized in the objective function

because its is related to the error in the fused image

compared to the reference. Spatial frequency on the

other hand, is maximized because salient features in an

image are known to have higher spatial frequencies.

The MI between fused image and reference image is

associated to the amount of additional information that

the former provides. Thus, it is desired that MI of the

fused image be as high as possible.

나. Convergence Analysis, Population Size, 
and Parameter Settings

Ignoring crossover and mutation first, that is, when

only selection is used, a hyperplane in the solution

space is sampled or represented in the next

generation's population pool based on the fitness of

individuals belonging to the schema [21] for the

hyperplane. Thus, taking Mt to be the number of

individuals sampling a particular schema H at

generation t

   


(11)

where   is the average fitness of the individuals

representing H in the population, and  is the average

fitness of all individuals.

To account for the effects of crossover and

mutation, the schema theorem is expressed as [22]:

 ≥ 

 



  

(12)

where  is the crossover probability,  is the

mutation probability, l is the length of individual

strings, δ is the defining length of schema H, and O(H)

is a function that counts the order of the schema.

In a canonical GA, as analytically stated in the

schema theorem [21], the 2 negative terms at the right

of the inequality in (Eq. 12) is considered as the amount

of sampling loss due to disruptions caused by

crossover and sampling gains due to preservation of

schemas by mutation operators, respectively. A loss

occurs when a potential schema H is lost in the

population. Thus, in our proposed scheme, the

assumptions (and desire) made for the inner GA (that

it converge to an individual ω-magnitude fitter) is

theoretically sound since, by eliminating disruptive

crossover, the loss terms in (Eq. 12) vanishes.

We can then expect potential schemas to be

represented in the population without getting lost in the

evolution. To achieve this, we rely on the effect of

bombarding the gifted genes with mutation.

Once the inner GA has returned an individual xi,

which by our definition in (Eq. 4) is ω-magnitude

better than the best individual in the outer GA at

generation t, we are immediately assured of a new

individual sampling a potentially diverse schema or
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region in the hyperspace. This assurance is supported

with Rudolph’ [23] analytical proof.

Therefore the convergence of our method, is

invariant to the population size (a minimal baseline size

of 20 individuals is used in the experiments with the

results shown in this section) and depends only on the

best individual in the initial population at t = 0.

Specifically, if   is the a priori known global best and

i t is the best individual (most likely the 

returned by the inner GA,) at arbitrary time t, then we

seek i t to be as close to   as possible so that

i t ≈  . Thus, following our definitions in (Eq.

4-5), we can estimate the (upper bound) number of

generations needed to converge into the global solution.

Assuming we have found   at generation t, we know

that   is related to the best individual at t=0 by,

   
  (13)

Taking natural logarithms on both sides and

rearranging

≈

ln   ln 
 

(14)

which gives us the upperbound for t in terms of the

best fitness value in the initial population (generation

t=0), the known global optimum value, and the decay

constant λ. The λ parameter can be considered similar

with the step parameter η in gradient-descent. It

controls the amount of improvement in fitness that the

inner GA must provide at a particular generation t. A

higher λ means that the inner GA is required to find

much fitter individuals, than smaller λ. In our

experiment, a value of 0.1 for the λ parameter is chosen

empirically. With this exponentially decaying fitness

(when minimizing), the convergence exhibits the

desirable asymptotic form.

Shown in Figure 3 below are test functions used to

characterize the convergence of the proposed method.

These functions are well known test functions in the

GA and optimization literature commonly used to

benchmark algorithms. The first one, is DeJong’ first

function which has the minimum at point (0,0). The

second, known as DeJong’s 2nd function has a slight

saddle shape which is normally where gradient-based

techniques fail. The minimum value for this case is at

point (1, 1). The last test function, Rastrigin’, is the

most difficult of the three, with minimum at point (0,0).

It has many valleys and ridges that can deceive

localized searches (deception is an important issue in

the optimization and GA literature). With a gradient

descent method, the search can easily get trapped in

any of the local minima.

(a) (b) (c)

Figure 3. Surface plots of test functions used: 
(a) DeJong’s 1st function (b) DeJong’s 
2nd function; and (c) Rastrigin’s 
function.

Ⅳ. RESULTS
1. Effect of Inner GA in Convergence of 

Outer GA 
Figure 4 below demonstrates the effect of the inner

GA on the convergence of the outer GA in the nested

algorithm proposed. Notice that the outer GA (shown in

red) in both trials (a) and (b) below, is initialized

(generation t = 1) with a population that has a best

fitness somewhere around value 7. The inner GA

(shown in blue) “"drags”" the fitness of the outer GA

lower as for example in generation 2 in (a) and (b).

The best fitness in the population of the outer GA is

simply the “"gifted”" individual xi returned by the inner

GA at generation 1, or referring back to Section 3.4, the

individual xi in step (iv.) of the outer GA, step (f.) of

the inner GA described therein.
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(a)

(b)

Figure 4. The forceful effect of the inner GA 
imposed on the outer GA shown here 
for two trials (a) and (b).

2. Comparative Results of Canonical GA 
and Nested GA with the Test Functions

Summarized in Table 1 below are the results for

tests on convergence of the canonical GA (CGA) and

nested GA (NGA) over the test functions described in

Figure 3.

Table 1. Fitness and Convergence of Nested GA 
(NGA), and Canonical GA (CGA) in the 3 
test functions

Test

Function

GA

Type

Mean Std Deviation

Conve

rgence

Fitness Conve

rgence

Fitness

DeJong1 CGA 17.80 0.00 12.06 0.00

NGA 13.04 0.00 4.71 0.00

DeJong2 CGA 56.00 0.21 31.86 0.57

NGA 22.32 0.08 4.03 0.11

Rastrigin CGA 27.24 2.20 7.19 2.06

NGA 26.58 1.34 6.95 1.09

It is undeniable in the case of Dejong' 1st and 2nd

functions that the proposed method is superior to the

canonical genetic algorithm. In these 2 test functions,

the NGA consistently exhibited lower means and

standard deviations showing that the two methods are

significantly different in both the shape of the

underlying population distribution and center density.

However, in the test with Rastrigin’s functions the

difference between the two methods’ performance is

not clearly discernible. The 2-dimensional measure

observations (fitness and convergence) seem to have

come from the same population of measured fitness and

convergence pairs. To quantify and reinforce any claim

that we have for the proposed method, we conducted a

2-dimensional single-factor Analysis of Variance

(MANOVA). But before doing so, we have to make

sure that the assumption on equal variances between

the samples (CGA and NGA) is satisfied. Figure 5

shows the result of this test indicating that MANOVA

can be performed. In the right portion of the figure is

the summary for the Levene’s test which results in

p-value = 0.589, greater than 0.05 significance level.

The null hypothesis tested is that the variances are

equal. With a p-value of this amount, we cannot reject

such a hypothesis and we conclude that the variances

are indeed equal. This is also apparent in the graphical

display of the 95% Bonferroni Confidence Intervals for

the standard deviations.

R
as

t_
G

A
T

yp
e

95% Bonferroni Confidence Intervals for StDevs

nga

cga

9.08.58.07.57.06.56.05.5

R
as

t_
G

A
T

yp
e

Rast_Gen_Used

nga

cga

403020100

F-Test

0.589

Test Statistic 1.07
P-Value 0.810

Levene's Test

Test Statistic 0.29
P-Value

Test for Equal Variances for Rast_Gen_Used

Figure 5. Result of the Test for Equal Variance 
with the measured quantities for CGA 
and NGA involving Rastrigin’s test 
function.



재능 유전인자를 갖는 네스티드 유전자 알고리듬을 이용한 새로운 다중 초점 이미지 융합 기법

- 85 -

Finally, the MANOVA result (see Fig. 6) below

indicates a significant difference between the two

methods. The null hypothesis in this case is that the

effect of GAType (whether NGA or CGA) is not

significant on the amount of (fitness, convergence) pair

observed, that is, they have equal means for both GAs

and the observed values came from only one population

(GAType). The p-value for the GA Type factor is 0.03

in all (Hotelling, etc) tests. Because this value is less

than the significance level of 0.05, we reject the reject

the null hypothesis in favor of the alternative, and

conclude that the effect of GAType on the measured

2-dimensional values (Gen Used and Fitness) is

significant. In other words, a significant amount of

variation in the measured convergence and fitness

under the Rastrigin test function is associated with the

variation in the algorithms used.

Figure 6. Result of the MANOVA on 2-dimensional 
measured values (Generations Used 
and Fitness) versus GA Type for the 
Rastrigin test function. 

3. Image Fusion Results
The figures shown next are sample outputs of the

fusion implementations. Blurred regions in the input

images are shown enclosed with red borders. In figure

7 are images from running the nested GA with a

fitness function designed to minimize RMSE.

Aside from the improved visual clarity of the fused

image, the quantitative measures on MI and RMSE

indicate improvements. Figure 8 is the result for

maximization of spatial frequency (SF).

Figure 7. Results of the fusion scheme using the 
Nested GA: (a) input image A; (b) input 
image B; (c) fused image Z; (d) genetic 
decision map.

Figure 8. Results of the fusion scheme using the 
Nested GA: (a) input image A; (b) input 
image B; (c) fused image Z; (d) genetic 
decision map.

Ⅴ. CONCLUSION 
In this paper, we presented a novel approach to

image fusion that employs evolutionary operators in

finding the optimal combination of image blocks from

input images. Individuals (chromosomes) are sequences

of indices to blocks in input images. The novelty of the

proposed scheme arises from two aspects. First, this is

the image fusion scheme that employs Genetic

Algorithm. Second, the Genetic Algorithm is a

hybridization technique that uses a small inner GA

nested inside a running bigger canonical GA.

We utilized an exponentially decaying scaling

function  forcing the inner GA to arrive at a gifted

individual which is fitter than best individual in the

outer GA by ω-magnitude. It is shown that the inner
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GA is able to influence and affect significantly the

convergence of the whole algorithm. The resulting GA

is invariant to parameters and population size, and a

minimum l size of 20 individuals is found to have good

results. It is statistically found out that the proposed

nested GA is superior to canonical lGA in terms of

convergence and optimal solutions found.
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