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Abstract
approximation. The nonlinear wave equations are used to provide design guidelines for the audio parametric
array. A time domain finite difference code that accurately solves the KZK (Khokhlov-Zabolotskaya-Kuznetsov)
nonlinear parabolic wave equation is used to predict the response of the parametric array. The time domain

Parametric array for audio applications is analyzed by numerical modeling and analytical

code relates the source size and the carrier frequency to the audible signal response including the output level
and beamwidth to considering the implementation issues for audio applications of the parametric array, the
emphasis is given to the frequency response and distortion. We use the time domain code to find out the
optimal parameters that will help produce the parametric array with highest achievable output in terms of the
average power within the demodulated signal. Parameters such as primary input frequency, audio source radius
and the modulation method are given utmost importance. The output effect of those parameters are demonstrated

through the numerical simulation.
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I . Introduction interaction of high frequency sound waves, effectively

overcoming the diffraction limit(a kind of spatial

The parametric array is a nonlinear transduction
mechanism that generates narrow, nearly sidelobe free

beams of low frequency sound, through the mixing and
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"uncertainty principle’) associated whit linear acoustics.

Westervelt presented a theoretical model of the
parametric array[l]. The parametric array produces
high amplitude ultrasonic waves which demodulate into
directional audible sound duehichthe
characteristics of the medium through which they
travel. As a result, a highly directional beam is

nonlinear
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produced. One of the m wavreasons why parametric
array is desired is becaituda parametric array produces
a secondasonsound beam with similar directivityhichtha
directewavreasoncarria hbeam. This is the factor that
results in the parametric array producing a low
frequency, low beamwidth output.

An input audio signal of frequency f; when

amplitude modulated with a frequency f, and passed

through a medium, the modulated output gets
demodulated to produce the
f1— fo, the audio signal, due to the self-demodulation

difference fequency

characteristics of the medium through which it is
traveling. The self- demodulation of the signal occurs
due to the nonlinear characteristis of air [1] There have
been studies  conducted on  this

self-demodulation process.

various

Although there is no closed form solution to the
Khokhlov—Zabolotskaya-Kuznetsov (KZK) equation, to
emphasize on the mathematical representation of this
parametric array, various mathematical models have
been proposed to design the nonlinear characteristics.
But one of the most accurate models is th KZK
nonlinear wave equation model. The KZK model is
known to describe, to the highest degree of accuracy
possible, the combined effects of absorption, diffraction
and nonlinearity. Here we use the following model to

study the characteristics of the parametric audio array.

II. The KZK Model

The KZK nonlinear parabolic wave equation is
known to very accurately describe the propagation of a
finite amplitude sound beam by combining the effects
of absorption, diffraction and nonlinearity. In the
derivation of the KZK equation, the sound waves are
assumed to form a highly directive beam. Although
there are no explicit analytical solutions for the KZK
equation, many research groups in pursuit of designing
a nonlinear wave propagation model have developed a

spectral method, a frequency domain approach or an

incomplete time domain model. But Lee[2] developed a
time domain algorithm that solves the KZK nonlinear
parabolic wave equation for axisymmetric finite
amplitude sound beams. We use this time domain
algorithm to model a parametric communication system
by transmitting an amplitude modulated signal into the
time domain code and receiving the demodulated output
at a distance x, in the farfield

The KZK equation is an extension of the Burgers
equation. This accounts for the combined effects of

nonlinearity, absorption and diffraction.

Axisymmetric source

Directive radiation

/

z

Fig. 1. Geometry for  radiation from an

axisymmetric source

Let z be the axis along which the beam propagates
and let(x,y) be the coordinates perpendicular to the
axis. It is known that there is no definite analytical
solution to the KZK equation. There with certain
assumptions, we use the time domain algorithm here to
study and analyze the wave propagation in a nonlinear
medium. In regard to the source, certain assumptions
that are made are follows: (1) it is defined in the plane
z = 0, (2) it has characteristic radius a, (3)it radiates
frequencies that satisfy the relationka >> 1, (4) the
beam emitted by the source is highly directional

Linear theory for directional beams, reveal the
existence of near—field and far—field regions. Far—field
does not start at a fixed point. The far-field is roughly
based on the Rayleigh distance, which is dependent on
the carrier frequency involved. The nearfield is

characterized by wavefronts that are mostly planar and
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the far field wavefronts, spherical. This is due to the
fact that the waves tend to spread out in the far field
as the power of the highly directional beam starts to
reduce as it propagates along the z axis.

The KZK equation is given by,

) a%p __B 62p2
2jcs ot 2p,Cco AT
(1)
Where, Vi = 82/8:132-1-82/63;2 1s a laplacian

82}9 _& 2
820T 2 7t

that operates in the plane perpendicular to the axis of
the beam. In order to improve the computational
efficiency in the farfield, a co—ordinate transformation
is applied to the KZK equation. This transformation
provides the geom pry that follows the spherical
spreading of the beam in the farfield. The time domain
algorithm that we use here solves the KZK equation in
a sequence at each range step. First the diffraction
term 1is integrated, then the absorption term and
eventually the nonlinear term.

The variable transformations are as follows,

o=2/7,
_ r/a
P=T1+o"
2
T=wgt — ({{f(); @)

P= (1—|—0)p/p0

where, a radius of the source, o = z/z()’ is a
dimensionless range co-ordinate in terms of Rayleigh
distance, z, = wya®/2c, at the characteristic angular
transverse

frequency, w, p is dimensionless

co-ordinate, 7 is dimensionless retarded time, p, is

characteristic source pressure amplitude and p is
acoustic pressure.

Thus using the time domain algorithm of the KZK
equation, we observe the parametric array’s path along
the axis of the beam. Now from the KZK equation,
Berktay's result, the demodulated secondary frequency

pressure, has already been derived as shown in Lee’s
dissertation. This Berktay’s result is given as,

Ppa’  d*E
16cpCyz dt?

P (0,2, ) = 3)

where (0 is co-efficient of nonlinearity, « is

attenuation co—efficient p, is density of the propagation
medium, 2z = is axial distance from the source, ¢, is
speed of sound in air £ is envelope function.

In order to get the demodulated output, we input the
preprocessed modulated data into the KZK equation.

The input parameters for the KZK model are given in
Table.1.

Table.1 Ideal input parameters

Parameter Value
Sample Frequency > 105 kHz
Input source radius 30 cm
Carrier Frequency > 45 kHz

Now we have a continuous source waveform as the
input, the amplitude modulated signal, to the KZK
model. For example, let us assume a single tone
frequency of 4000 Hz is amplitude modulated with a 20
kHz carrier tone. This amplitude modulated signal will
serve as the mput to the KZK model. Ap is the
transverse step size. The A p value is normally taken
to be 0.03. p;z4x should be in the range of 12> P4y
> 8 as stated by Lee based on experimental results.
Here for the KZK model, a value of 10 for p;.4y was

chosen. The value of A p and p,4x remains the same

throughout all simulations.
The ‘A7 value is based on the formula,

AT=2m/60, <1,
=27/120,1 < I" < 10, &)
= 27,240,10 < ' < 200.

In our simulations, we settled for a A7 value based
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on the Goldberg number obtained. Since the Goldberg
number is dependent on the absorption co-efficient
which in turn is dependent on the carrier frequency, the
AT value keeps changing based on the input signal
considered.

In order to observe the propagation of a wave along
the axis of the beam, we need to specify ‘Sigma ‘points
or * watch points’. The distance between each point is
determined by the step size. There are two methods
based on which the step size is designed. The
discontinuity in the source’ step function results in
numerical oscillations in the nearfield as can be seen in
Fig.2.
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Fig. 2 Propagation of a beam along the axis

In order to overcome these oscillations, we opt for
an Implicit Backward Finite Difference (IBFD) method
which is effective in damping the oscillations. The
downside to this is the fact that the IBFD method
requires small step sizes for accurate results. The step
size (Ao) used here is .001. As mentioned before,
smaller step sizes translate into higher computation
time. The self-demodulation of the signal is quite an
interesting study that has its applications in various
fields. Companies such as Holosonics and ATC have
been able to exploit this feature to commercialize
products that produce high directivity output. Now how
does a modulated signal
demodulated? Consider this.

a piston is given by,

automatically — get

The source condition for

p(O,z,t):pr(t)H(afr), (5)

ft)=E(t)sin(wt + ¢ (t)]

where, amplitude modulation Z(t) and phase
modulation ¢ (¢ ) are slowly varying functions of time.

As already mentioned earlier, we consider the

attenuation co—efficient to be large enough (v zy = 1)

to contain the non-linear interaction in the nearfield
based on the Rayleigh Distance. The instantaneous
carrier wave 1S

angular frequency of the

Q(t) = wy+ do/dt. Based on the parametric array
model, the primary beam is considered to be a
collimated plane wave, and further assume that the
exponential attenuation acts locally based on the
instantaneous angular frequency :

pi(0.2.1) = poe” "B (r)sinlwyr+ ¢ (1) H(a — 1)
©)

The frequency content of the secondary pressure,

p,, based on the difference frequency, is determined by,

p?. The high frequency spectrum is absorbed more
rapidly than the low frequency spectrum. Therefore

most, or all of the output is based on the low frequency

spectrum contribution which is given by,

1 —al(r)z
Pi(r.zt) = Sple B () Ha-1) ()

The length of the non-linear interaction region itself

is given by,
L,= (20) " ®)

A further assumption is made that the absorption of
the nonlinearly generated low—frequency components is
a relatively weak effect, which is justified if £(¢) and
P(t) are

corresponding to the very low frequencies. The wave

slow varying functions of time,
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equation for p, becomes,

oy G [T oo _ B opi
5. 9 m(vaz)dT— 2pd or O

Using Fourier transforms and the definition of
Green’s function, one finds that the solution for the
demodulated output along the axis of the beam for
arbitrary p, (1,2, 7) is,

2 z =5} 2 D31
p,(0.2.7) = L9 / 2y S — T _jrdrdz
P20,27) 2p4co 07 4y Y, nlzr 2(;0(2—2)} z—2z

(10)

Substituting Eq.7 into Eq.10 yields,

Ppia® 9" E*(r)

0,z,t) =
P ) 16pycoz 0T a(r)

(11)

For ¢ =const and therefore, a (7) = . Hence the

above equation reduces to Berktay's solution, which is,

given in Eq.3

II. Simulation Result with Audio
Signal

We consider an audio file (.wav file) as the input
source instead of a multi-tone frequency signal. The
input audio signal, whose frequency response can be
seen in Fig.3, with a total of ‘39922" samples has a
sample frequency of 8 kHz. The audio file reads “The
discrete Fourier transform of a re-evalued signal is
conjugated symmetric”. The sampling frequency of 8
kHz means the highest frequency component f,,.. is of
4kHz. The objective is to send amplitude modulated
waveform into the KZK model and observe the
demodulated output at a particular distance [3].

The audio file with an f,,..of 4kHz if modulated

with a carrier of DkHz would result in an output signal

with a spectrum of 9%kHz. However the 9 kHz is not
in the ultrasonic range and remains audible. If this
audible modulated signal is passed into the air channel,
it will lead to more audible harmonics which translates
into distortion. Therefore, we have to upsample the

message to a higher rate.

Input Audio Signal

-80

-100

-120

-140

-160

-180

Frequency

Fig. 3 Input Audio Signal

The range of acceptable carrier frequencies is
constrained by the message bandwidth. The original
message must be upsampled by an integer factor U to
ensure that there is no aliasing. To avoid aliasing near

DC, we need the carrier frequency fouppmr to be
greater than f5ca74x. The highest frequency possible

m a SSB or DSB signal is  then

Jaopaax = fearrmr + fuscrax since the
simulations must be carried out digitally, this implies

that the overall sampling rate, foygrazz, must be

greater than 2fy0pax-

Now we increase the sampling frequency to 40 kHz.
With a carrier frequency, Fc of 159 kHz and a
sampling frequency of 40 kHz, the audio signal is
square rooted to compensate for distortion and
amplitude modulated.

The amplitude modulated signal is passed into the
channel, the KZK model. The KZK model will be
explained in a subsequent chapter .With a source radius
of .15 meters, the Rayleigh distance determines that
farfield starts approximately at a distance of 3.20

meters. The amplitude modulation was done with a
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modulation index of 0.7. This modulated signal passed
through air, due to the inherent nonlinear properties of

distortion. Therefore the audio signal was upsampled
by an integer factor, U of 10. After upsampling, the
air, automatically demodulates and produces the audio
output at a certain distance, of 3.7 meters, at the
farfield.

audio signal has a sampling frequency f, of 80kHz as
can be seen in Fig6. This audio signal is then
amplitude modulated with a carrier signal of 35.9 kHz.
The amplitude modulated signal does not have a

frequency component in the audible range as evident in

Modulated Signal

Fig.7. For a source radius considered to be of 0.15
meters, the farfield distance is determined to begin at
a distance of 7.6 meters.
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From Fig4, it is plain obvious to see that there
exists certain frequency components in the audible
range. If there exists frequency components in the
audible range, passing this signal through the channel
will only generate more harmonics which will lead to a
greater level of distortion. In Fig.5 it can be seen that
as the demodulated data takes shape, it varies more
from the original audio file as evident in the plot.
Therefore, we need to choose a higher -carrier
frequency.

To begin with, we need to increase the sampling

frequency of the audio signal in order to reduce

Fig. 7. Amplitude modulated signal

After the upsampled AM signal is passed through
the ‘air channel’, and the demodulated data is obtained,
as seen in Fig8 we calculate the Power spectral
density (PSD) of the output data. The PSD of the
output signal is low due to the high distortion levels
that exist in the demodulated data.

IV. Conclusion
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In this paper, parametric array for audio applications
is analyzed by numerical modeling and analytical
approximation. A time domain finite difference code
that accurately solves the KZK nonlinear parabolic
wave equation is used to predict the response of the
parametric array. The time domain code relates the
source size and the carrier frequency to the audible
signal response including the output level and
beamwidth. In considering the implementation issues
for audio applications of the parametric array, the
emphasis 1s given to the frequency response and
distortion. Specifically we use the time domain code to
find out the optimal parameters that will help produce
the parametric array with highest achievable output in
terms of the average power within the demodulated
signal. Parameters such as primary input frequency and
sampling frequency are demonstrated through the

numerical simulation.
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