
KZK 모델을 이용한 파라메트릭 어레이 음향 신호 처리

- 139 -

*정회원, 제주대학교 해양시스템공학과 
**정회원, (주) 알고코리아
***정회원, 국방과학연구소
접수일자 2009.9.１, 수정일자 2009.10.２

논문 2009-5-20

KZK 모델을 이용한 파라메트릭 어레이 음향 신호 처리

Audio Signal Processing using Parametr ic Array

with KZK Model
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요  약 본 논문에서는 파라메트릭 어레이를 이용한 음향신호에 대한 수치 모델링 기법 및 분석 결과를 제시한다.

사용된  음성 파라메트릭 배열의 분석 수치모델은 KZK(Khokhlov-Zabolotskaya-Kuznetsov)로서 KZK수치모델은 시간
영역의 차분방정식 알고리즘을 사용하며 파라메트릭배열의 정확한 응답특성이 분석이 가능하다. 시간영역기반의 KZK

모델은 음원의 크기와 전송주파수의 영향을 받으며, 가청신호응답은 출력레벨과 빔폭의 크기를 포함한다. 음성신호에 
대하여 파라메트릭 배열을 효율적으로 적용시키기 위해서는 고려해야할 요소는 표본화 주파수, 트랜스듀서의 반경 및 
변조방식 파라미터 등이 있다. 본 논문에서는 다양한 요소 중 표본화 주파수에 따른 응답신호의 왜곡 분석 및 실험 
결과를 시뮬레이션을 통해 제시하였다.

Abstract  Parametric array for audio applications is analyzed by numerical modeling and analytical 
approximation. The nonlinear wave equations are used to provide design guidelines for the audio parametric 
array. A time domain finite difference code that accurately solves the KZK (Khokhlov-Zabolotskaya-Kuznetsov) 
nonlinear parabolic wave equation is used to predict the response of the parametric array. The time domain 
code relates the source size and the carrier frequency to the audible signal response including the output level 
and beamwidth to  considering the implementation issues for audio applications of the parametric array, the 
emphasis is given to the frequency response and distortion. We use the time domain code to find out the 
optimal parameters that will help produce the parametric array with highest achievable output in terms of the 
average power within the demodulated signal. Parameters such as primary input frequency, audio source radius 
and the modulation method are given utmost importance. The output effect of those parameters are demonstrated 
through the numerical simulation. 

Key Ｗords : Parametric array, KZK model, Numerical modeling, Analytical approximation

Ⅰ. Introduction
The parametric array is a nonlinear transduction

mechanism that generates narrow, nearly sidelobe free

beams of low frequency sound, through the mixing and

interaction of high frequency sound waves, effectively

overcoming the diffraction limit(a kind of spatial

'uncertainty principle') associated whit linear acoustics.

Westervelt presented a theoretical model of the

parametric array[1]. The parametric array produces

high amplitude ultrasonic waves which demodulate into

directional audible sound duehichthe nonlinear

characteristics of the medium through which they

travel. As a result, a highly directional beam is
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produced. One of the m wavreasons why parametric

array is desired is becaituda parametric array produces

a secondasonsound beam with similar directivityhichtha

directewavreasoncarria hbeam. This is the factor that

results in the parametric array producing a low

frequency, low beamwidth output.

An input audio signal of frequency  when

amplitude modulated with a frequency  and passed

through a medium, the modulated output gets

demodulated to produce the difference fequency

   , the audio signal, due to the self-demodulation

characteristics of the medium through which it is

traveling. The self- demodulation of the signal occurs

due to the nonlinear characteristis of air [1] There have

been various studies conducted on this

self-demodulation process.

Although there is no closed form solution to the

Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, to

emphasize on the mathematical representation of this

parametric array, various mathematical models have

been proposed to design the nonlinear characteristics.

But one of the most accurate models is th KZK

nonlinear wave equation model. The KZK model is

known to describe, to the highest degree of accuracy

possible, the combined effects of absorption, diffraction

and nonlinearity. Here we use the following model to

study the characteristics of the parametric audio array.

Ⅱ. The KZK Model
The KZK nonlinear parabolic wave equation is

known to very accurately describe the propagation of a

finite amplitude sound beam by combining the effects

of absorption, diffraction and nonlinearity. In the

derivation of the KZK equation, the sound waves are

assumed to form a highly directive beam. Although

there are no explicit analytical solutions for the KZK

equation, many research groups in pursuit of designing

a nonlinear wave propagation model have developed a

spectral method, a frequency domain approach or an

incomplete time domain model. But Lee[2] developed a

time domain algorithm that solves the KZK nonlinear

parabolic wave equation for axisymmetric finite

amplitude sound beams. We use this time domain

algorithm to model a parametric communication system

by transmitting an amplitude modulated signal into the

time domain code and receiving the demodulated output

at a distance x, in the farfield

The KZK equation is an extension of the Burgers

equation. This accounts for the combined effects of

nonlinearity, absorption and diffraction.

Directive radiation

z

y

x
Axisymmetric source

Fig. 1. Geometry for radiation from an 
axisymmetric source

Let z be the axis along which the beam propagates

and let(x,y) be the coordinates perpendicular to the

axis. It is known that there is no definite analytical

solution to the KZK equation. There with certain

assumptions, we use the time domain algorithm here to

study and analyze the wave propagation in a nonlinear

medium. In regard to the source, certain assumptions

that are made are follows: (1) it is defined in the plane

z = 0, (2) it has characteristic radius a, (3)it radiates

frequencies that satisfy the relation,ka >> 1, (4) the

beam emitted by the source is highly directional

Linear theory for directional beams, reveal the

existence of near-field and far-field regions. Far-field

does not start at a fixed point. The far-field is roughly

based on the Rayleigh distance, which is dependent on

the carrier frequency involved. The nearfield is

characterized by wavefronts that are mostly planar and
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the far field wavefronts, spherical. This is due to the

fact that the waves tend to spread out in the far field

as the power of the highly directional beam starts to

reduce as it propagates along the z axis.

The KZK equation is given by,








∇

⊥ 






 












(1)

Where, ∇⊥
   

is a laplacian

that operates in the plane perpendicular to the axis of

the beam. In order to improve the computational

efficiency in the farfield, a co-ordinate transformation

is applied to the KZK equation. This transformation

provides the geom pry that follows the spherical

spreading of the beam in the farfield. The time domain

algorithm that we use here solves the KZK equation in

a sequence at each range step. First the diffraction

term is integrated, then the absorption term and

eventually the nonlinear term.

The variable transformations are as follows,

  

 


  


  
 

 

  
(2) 

     

where,  radius of the source,    is a

dimensionless range co-ordinate in terms of Rayleigh

distance,   
 at the characteristic angular

frequency, ,  is dimensionless transverse

co-ordinate,  is dimensionless retarded time,  is

characteristic source pressure amplitude and  is

acoustic pressure.

Thus using the time domain algorithm of the KZK

equation, we observe the parametric array’s path along

the axis of the beam. Now from the KZK equation,

Berktay’s result, the demodulated secondary frequency

pressure, has already been derived as shown in Lee’s

dissertation. This Berktay’s result is given as,

   
  










 


(3)

where  is co-efficient of nonlinearity, 

is

attenuation co-efficient  is density of the propagation

medium,   is axial distance from the source,  is

speed of sound in air  is envelope function.

In order to get the demodulated output, we input the

preprocessed modulated data into the KZK equation.

The input parameters for the KZK model are given in

Table.1.

Table.1 Ideal input parameters   
Parameter Value

Sample Frequency > 105 kHz

Input source radius 30 cm

Carrier Frequency > 45 kHz

Now we have a continuous source waveform as the

input, the amplitude modulated signal, to the KZK

model. For example, let us assume a single tone

frequency of 4000 Hz is amplitude modulated with a 20

kHz carrier tone. This amplitude modulated signal will

serve as the input to the KZK model. △ is the

transverse step size. The△ value is normally taken

to be 0.03.  should be in the range of 12> 

> 8 as stated by Lee based on experimental results.

Here for the KZK model, a value of 10 for  was

chosen. The value of△ and  remains the same

throughout all simulations.

The ‘△’ value is based on the formula,

△     

   ≤  ≤ 

   ≤  ≤ 

(4)

In our simulations, we settled for a△ value based
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on the Goldberg number obtained. Since the Goldberg

number is dependent on the absorption co-efficient

which in turn is dependent on the carrier frequency, the

△ value keeps changing based on the input signal

considered.

In order to observe the propagation of a wave along

the axis of the beam, we need to specify ‘Sigma ‘points

or ‘ watch points’. The distance between each point is

determined by the step size. There are two methods

based on which the step size is designed. The

discontinuity in the source’ step function results in

numerical oscillations in the nearfield as can be seen in

Fig.2.
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Fig. 2 Propagation of a beam along the axis

In order to overcome these oscillations, we opt for

an Implicit Backward Finite Difference (IBFD) method

which is effective in damping the oscillations. The

downside to this is the fact that the IBFD method

requires small step sizes for accurate results. The step

size (△) used here is .001. As mentioned before,

smaller step sizes translate into higher computation

time. The self-demodulation of the signal is quite an

interesting study that has its applications in various

fields. Companies such as Holosonics and ATC have

been able to exploit this feature to commercialize

products that produce high directivity output. Now how

does a modulated signal automatically get

demodulated? Consider this. The source condition for

a piston is given by,

            

          
(5)

where, amplitude modulation    and phase

modulation   are slowly varying functions of time.

As already mentioned earlier, we consider the

attenuation co-efficient to be large enough (

 ≥ )

to contain the non-linear interaction in the nearfield

based on the Rayleigh Distance. The instantaneous

angular frequency of the carrier wave is

      . Based on the parametric array

model, the primary beam is considered to be a

collimated plane wave, and further assume that the

exponential attenuation acts locally based on the

instantaneous angular frequency :

    ≃
     

(6)

The frequency content of the secondary pressure,



, based on the difference frequency, is determined by,


. The high frequency spectrum is absorbed more

rapidly than the low frequency spectrum. Therefore

most, or all of the output is based on the low frequency

spectrum contribution which is given by,


    ≃







          (7)

The length of the non-linear interaction region itself

is given by,

   
 (8)

A further assumption is made that the absorption of

the nonlinearly generated low-frequency components is

a relatively weak effect, which is justified if    and

  are slow varying functions of time,

corresponding to the very low frequencies. The wave
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equation for 

becomes,








 
∞



∇
⊥  











 (9)

Using Fourier transforms and the definition of

Green’s function, one finds that the solution for the

demodulated output along the axis of the beam for

arbitrary      is,

    







 







∞


 

  

     


 

(10)

Substituting Eq.7 into Eq.10 yields,

     













   
  

 (11)

For  const and therefore,    . Hence the

above equation reduces to Berktay's solution, which is,

given in Eq.3

Ⅲ. Simulation Result with Audio 
Signal

We consider an audio file (.wav file) as the input

source instead of a multi-tone frequency signal. The

input audio signal, whose frequency response can be

seen in Fig.3, with a total of ‘39922’ samples has a

sample frequency of 8 kHz. The audio file reads “The

discrete Fourier transform of a re-evalued signal is

conjugated symmetric”. The sampling frequency of 8

kHz means the highest frequency component  is of

4kHz. The objective is to send amplitude modulated

waveform into the KZK model and observe the

demodulated output at a particular distance [3].

The audio file with an of 4kHz if modulated

with a carrier of 5kHz would result in an output signal

with a spectrum of 9kHz. However the 9 kHz is not

in the ultrasonic range and remains audible. If this

audible modulated signal is passed into the air channel,

it will lead to more audible harmonics which translates

into distortion. Therefore, we have to upsample the

message to a higher rate.
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Fig. 3 Input Audio Signal

The range of acceptable carrier frequencies is

constrained by the message bandwidth. The original

message must be upsampled by an integer factor U to

ensure that there is no aliasing. To avoid aliasing near

DC, we need the carrier frequency  to be

greater than  . The highest frequency possible

in a SSB or DSB signal is then

     . since the

simulations must be carried out digitally, this implies

that the overall sampling rate,  , must be

greater than  .

Now we increase the sampling frequency to 40 kHz.

With a carrier frequency, Fc of 15.9 kHz and a

sampling frequency of 40 kHz, the audio signal is

square rooted to compensate for distortion and

amplitude modulated.

The amplitude modulated signal is passed into the

channel, the KZK model. The KZK model will be

explained in a subsequent chapter .With a source radius

of .15 meters, the Rayleigh distance determines that

farfield starts approximately at a distance of 3.20

meters. The amplitude modulation was done with a
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modulation index of 0.7. This modulated signal passed

through air, due to the inherent nonlinear properties of

air, automatically demodulates and produces the audio

output at a certain distance, of 3.7 meters, at the

farfield.
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Fig. 4. Amplitude modulated signal
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From Fig.4, it is plain obvious to see that there

exists certain frequency components in the audible

range. If there exists frequency components in the

audible range, passing this signal through the channel

will only generate more harmonics which will lead to a

greater level of distortion. In Fig.5 it can be seen that

as the demodulated data takes shape, it varies more

from the original audio file as evident in the plot.

Therefore, we need to choose a higher carrier

frequency.

To begin with, we need to increase the sampling

frequency of the audio signal in order to reduce

distortion. Therefore the audio signal was upsampled

by an integer factor, U of 10. After upsampling, the

audio signal has a sampling frequency  of 80kHz as

can be seen in Fig.6. This audio signal is then

amplitude modulated with a carrier signal of 35.9 kHz.

The amplitude modulated signal does not have a

frequency component in the audible range as evident in

Fig.7. For a source radius considered to be of 0.15

meters, the farfield distance is determined to begin at

a distance of 7.6 meters.
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Fig. 6. Upsampled audio signal
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Fig. 7. Amplitude modulated signal

After the upsampled AM signal is passed through

the ‘air channel’, and the demodulated data is obtained,

as seen in Fig.8, we calculate the Power spectral

density (PSD) of the output data. The PSD of the

output signal is low due to the high distortion levels

that exist in the demodulated data.

Ⅳ. Conclusion
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In this paper, parametric array for audio applications

is analyzed by numerical modeling and analytical

approximation. A time domain finite difference code

that accurately solves the KZK nonlinear parabolic

wave equation is used to predict the response of the

parametric array. The time domain code relates the

source size and the carrier frequency to the audible

signal response including the output level and

beamwidth. In considering the implementation issues

for audio applications of the parametric array, the

emphasis is given to the frequency response and

distortion. Specifically we use the time domain code to

find out the optimal parameters that will help produce

the parametric array with highest achievable output in

terms of the average power within the demodulated

signal. Parameters such as primary input frequency and

sampling frequency are demonstrated through the

numerical simulation.
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