DOI QR코드

DOI QR Code

Dry Etching of PMMA and Polycarbonate in a Diffusion Pump-based Capacitively Coupled O2 Plasma

확산펌프 기반의 O2 축전결합 플라즈마를 이용한 PMMA와 폴리카보네이트의 건식 식각

  • Park, Ju-Hong (School of Nano Engineering /Nano Manufacturing Center, Inje University) ;
  • Lee, Seong-Hyun (School of Nano Engineering /Nano Manufacturing Center, Inje University) ;
  • Choi, Jyoung-Hoon (School of Nano Engineering /Nano Manufacturing Center, Inje University) ;
  • Noh, Ho-Sub (School of Nano Engineering /Nano Manufacturing Center, Inje University) ;
  • Lee, Je-Won (School of Nano Engineering /Nano Manufacturing Center, Inje University)
  • 박주홍 (인제대학교 나노공학부/나노 매뉴팩쳐링 연구소) ;
  • 이성현 (인제대학교 나노공학부/나노 매뉴팩쳐링 연구소) ;
  • 최경훈 (인제대학교 나노공학부/나노 매뉴팩쳐링 연구소) ;
  • 노호섭 (인제대학교 나노공학부/나노 매뉴팩쳐링 연구소) ;
  • 이제원 (인제대학교 나노공학부/나노 매뉴팩쳐링 연구소)
  • Published : 2009.08.27

Abstract

We report on the capacitively coupled O2 plasma etching of PMMA and polycarbonate (PC) with a diffusion pump. Plasma process variables were process pressure and CCP power at 5 sccm $O_2$ gas flow rate. Characterization was done in order to analyze etch rate, etch selectivity, surface roughness, and morphology using stylus surface profilometry and scanning electron microscopy. Self bias decreased with increase of process pressure in the range of 25$\sim$180 mTorr. We found an important result for optimum pressure for the highest etch rate of PMMA and PC, which was 60 mTorr. PMMA and PC had etch rates of 0.46 and 0.28 ${\mu}m$/min under pressure conditions, respectively. More specifically, etch rates of the materials increased when the pressure changed from 25 mTorr to 60 mTorr. However, they reduced when the pressure increased further after 60 mTorr. RMS roughnesses of the etched surfaces were in the range of 2.2$\sim$2.9 nm. Etch selectivity of PMMA to a photoresist was $\sim$1.5:1 and that of PC was $\sim$0.9:1. Etch rate constant was about 0.04 ${\mu}m$/minW and 0.02 ${\mu}m$/minW for PMMA and PC, respectively, with the CCP power change at 5 sccm $O_2$ and 40 mTorr process pressure. PC had more erosion on the etched sidewall than PMMA did. The OES data showed that the intensity of the oxygen atomic peak (777.196 nm) proportionally increased with the CCP power.

Keywords

References

  1. F. Baldinia, A. Carloni, A. Giannetti, G. Porro and C. Trono, Sens. Actuators B, 139, 646 (2009)
  2. A. Mathur, S. S. Roy, M. Tweedie, S. Mukhopadhyay, S. K. Mitra and J. A. McLaughlin, Curr. Appl. Phys., 9, 1999 (2009) https://doi.org/10.1016/j.cap.2009.01.007
  3. C. Zhang, C. Yang, D. Din and J. Micromech. Microeng., 14, 663 (2004) https://doi.org/10.1088/0960-1317/14/5/001
  4. Y. Zhao, F. Wang, Z. C. Cui, J. Zheng, H. M. Zhang, D. M. Zhang, S. Y. Liu and M. B. Yi., Microelectron J., 35, 605 (2004) https://doi.org/10.1016/j.mejo.2004.02.005
  5. H. Nabesawa, T. Hitobo, S. Wakabashi, T. Asaji, T. Abe and M. Sek, Sens. Actuators B, 132, 637 (2008) https://doi.org/10.1016/j.snb.2008.01.050
  6. J. K. Kim, J. H. Kim, Y. H. Park, Y. W. Joo, I. K. Baek, G. S. Cho, H. J. Song and J. W. Lee, Kor. J. Mater. Res., 17, 642 (2007) https://doi.org/10.3740/MRSK.2007.17.12.642
  7. Y. W. Joo, Y. H. Park, H. S. Noh, J. K. Kim, S. H. Lee, G. S. Cho, H. J. Song, M. Jeon and J. W. Lee, J. Kor. Vac. Soc., 17, 16 (2008) https://doi.org/10.5757/JKVS.2008.17.1.016
  8. Y. H. Park, Y. W. Joo, J. K. Kim, H. S. Noh and J. W. Lee, Kor. J. Mater. Res., 19, 68 (2009) https://doi.org/10.3740/MRSK.2009.19.2.068
  9. T. Maeda, J. W. Lee, R. J. Shul, J. Han, J. Hong, E. S. Lambers, S. J. Pearton, C. R. Abernathy and W. S. Hobson, Appl. Surf. Sci., 143, 174 (1999) https://doi.org/10.1016/S0169-4332(98)00594-7
  10. I. K. Baek, W. T. Lim, J. W. Lee, M. H. Jeon, G. S. Cho and S. J. Pearton, J. Vac. Sci. Technol. B., 21, 2487 (2003) https://doi.org/10.1116/1.1615984
  11. J. W. Lee, M. H. Jeon, M. Devre, K. D. Mackenzie, D. Johnson, J. N. Sasserath, S. J. Pearton, F. Ren and R. J. Shul, Solid-state Electron., 45, 1683 (2001) https://doi.org/10.1016/S0038-1101(01)00162-9
  12. L. Jalabert, P. Dubreuil, F. Carcenac, S. Pinaud, L. Salvagnac, H. Granier and C. Fontaine, Microelectronic Eng., 85, 1173 (2008) https://doi.org/10.1016/j.mee.2008.01.063
  13. D. C. Hays, H. Cho, J. W. Lee, M. W. Devre, B. H. Reelfs, D. Johnson, J. N. Sasserath, L. C. Meyer, E. Toussaint, F. Ren, C. R. Abernathy and S. J. Pearton, Appl. Surf. Sci., 156, 76 (2000) https://doi.org/10.1016/S0169-4332(99)00363-3
  14. S. D. Kim, S. Y. Jung, B. T. Lee and J. S. Huh, Kor. J. Mater. Res., 10, 179 (2000)
  15. J. Kim, J. Lee, K. Ryoo, Y. Lee, M. Lee and W. Kim, J. Kor. Aca. Ind. Soc., 5 ,128 (2004)