DOI QR코드

DOI QR Code

Na Doping Properties of Cu(In,Ga)Se2 Absorber Layer Using NaF Interlayer on Mo Substrate

Mo 기판위의 NaF 중간층을 이용한 Cu(In,Ga)Se2 광흡수층의 Na 도핑특성에 관한 연구

  • 박태정 (한국과학기술원 신소재공학과) ;
  • 신동협 (한국과학기술원 신소재공학과) ;
  • 안병태 (한국과학기술원 신소재공학과) ;
  • 윤재호 (한국에너지기술연구원)
  • Published : 2009.08.27

Abstract

In high-efficiency Cu(In,Ga)$Se_2$ solar cells, Na is doped into a Cu(In,Ga)$Se_2$ light-absorbing layer from sodalime-glass substrate through Mo back-contact layer, resulting in an increase of device performance. However, this supply of sodium is limited when the process temperature is too low or when a substrate does not supply Na. This limitation can be overcome by supplying Na through external doping. For Na doping, an NaF interlayer was deposited on Mo/glass substrate. A Cu(In,Ga)$Se_2$ absorber layer was deposited on the NaF interlayer by a three-stage co-evaporation process As the thickness of NaF interlayer increased, smaller grain sizes were obtained. The resistivity of the NaF-doped CIGS film was of the order of $10^3{\Omega}{\cdot}cm$ indicating that doping was not very effective. However, highest conversion efficiency of 14.2% was obtained when the NaF thickness was 25 nm, suggesting that Na doping using an NaF interlayer is one of the possible methods for external doping.

Keywords

References

  1. I. Repins, M. Contreras, Y. Romero, Y. Yan, Metzger, J. Li, S. Johnston, R. Egaas, C. DeHart, J. Scharf, B. E. McCandless and R. Nouf, IEEE Photovoltaics Specialists Conference Record, 33, 1065(2008) https://doi.org/10.1109/PVSC.2008.4922628
  2. J. R. Tuttle, J. S. Ward, A. Duda, T. A. Berens, M. A. Contreras, K. R. Ramanathan, Al. L. Tennant, J. Keane, E. D. Cole, K. Emery and R. Noufi, Proc. Material Research Society Spring Meeting, 426, 143 (1996) https://doi.org/10.1557/PROC-426-143
  3. J. R. Tuttle, M. A. Contreras, T. J. Gillespie, K. R. Ramanathan, A. L. Tennant, J. Keane, A. M. Gabor and R. Noufi, Progr. Photovolt., 235, 3 (1955)
  4. L. Stolt, K. Granath, E. Niemi, M. Bodegard, J. Hedstrom, S. Bocking, M. Carter, M. Burgelman, B. Dimmler, R. Menner, M. Powalla and H. W. Schock, Proc. 13th European Photovolt. Solar Energy Conf., Nice, 1451(1995)
  5. T. Negami, M. Nishitani, N. Kohara, Y. Hashimoto and T. Wada, Proc. Material Research Society Spring Meeting, 426, 291 (1996) https://doi.org/10.1557/PROC-426-291
  6. L. Stolt, J. Hedstrom, J. Kessler, M. Ruckh, K. O. Velthaus and H. W. Schock, Appl. Phys. Lett., 62, 597 (1993) https://doi.org/10.1063/1.108867
  7. D. F. Dawson-Elli, C. B. Moore, R. R. Gay and C. L. Jensen, Proc. 1st World Conf. Photovoltaic Energy Conv. p.152 (1994)
  8. M. Bodegard, L. Stol and J. Hedstrom, 12th European Photovoltaic Solar Energy Conference and Exhibition, p.1743-1746, Amsterdam (1994)
  9. J. Holz, F. Karg, H. von Philipsborn, 12th European Photovoltaic Solar Energy Conference and Exhibition, p.1592-1595, Amsterdam (1994)
  10. J. Hedstrom, H. Ohlsen, M. Bodegard, A. Kylmer and L. Stolt, Proc. 23rd IEEE Photovoltaic Solar Energy Conf., p.1743 Amsterdam (1994)
  11. D. Rudmann, G. Bilger, M. Kaelin, F. J. Haug, H. Zogg and A. N. Tiwari, Thin Solid Films, 431, 37 (2003) https://doi.org/10.1016/S0040-6090(03)00246-3
  12. K. Granath, M. Bodegard and L. Stolt, Thin Solid Films, 361, 9 (2000) https://doi.org/10.1016/S0040-6090(99)00828-7
  13. M. Ruckh, D. Schmid, M. Kaiser, R. Schaffler, T. Walter and H. W. Schock, 1st WCPEC, Hawaii, p.156-159 (1994)
  14. J. H. Scofield, 1st WCPEC, p. 164-166, Hawaii (1994)
  15. S. Marsillac, S. Dorn and R. Rocheleau, Solar Energy Mat. & Solar Cells 82, p. 45-52 (2004) https://doi.org/10.1016/j.solmat.2004.01.004
  16. T. Nakada, D. Iga, H. Ohbo and A. Kunioka, Jpn. J. Appl. Phys., 36, 732 (1997) https://doi.org/10.1143/JJAP.36.732
  17. D. J. Schroeder and A. Rockett, J. Appl. Phys., 82, 4982 (1997) https://doi.org/10.1063/1.366365