DOI QR코드

DOI QR Code

East Asian Precipitation and Circulation Response to the Madden-Julian Oscillation

매든-줄리안 진동의 위상에 따른 동아시아 지역의 강수와 순환의 변동성

  • Han, Sang-Dae (Division of Earth Environmental System, Atmospheric Science Major, Pusan National University) ;
  • Seo, Kyong-Hwan (Division of Earth Environmental System, Atmospheric Science Major, Pusan National University)
  • 한상대 (부산대학교 지구환경시스템학부) ;
  • 서경환 (부산대학교 지구환경시스템학부)
  • Published : 2009.06.30

Abstract

This study examines the effects of the Madden-Julian oscillation (MJO) or the Intraseasonal Oscillation (ISO) on precipitation, temperature and circulation anomalies over East Asia according to the eight different MJO phases during the winter and summer seasons. A nonlinear response appears the wintertime precipitation pattern during the phase of 3 (where the MJO center is located over the Eastern Indian Ocean) and 8 (where the MJO center is located over the Western Hemisphere) over the Korean Peninsula. That is, for these phases, the positive precipitation anomalies appear for the MJO intensity less than 2 standard deviations while the negative precipitation anomalies appear in the case of the MJO intensity greater than 2 standard deviations. The negative precipitation anomaly in the latter case is duandard d stronger anomalous anticyclone formed over the Korean Peninsula and cold and dry advection by northerly winds. The response of precipitation and circulation to the boreal summer ISO is also investigated.

본 연구는 겨울철과 여름철에 8개의 다른 MJO 전파 위상에 따라 동아시아 지역에서 강수와 기온, 순환 아노말리에 대하여 매든-줄리안 진동(MJO)/계절내 진동(ISO)의 영향에 대하여 고찰하였다. MJO의 중심이 동인도양에 위치한 3번 위상과 MJO의 중심이 서반구에 위치한 8번 위상에서 한반도의 겨울철 강수 패턴이 비선형적으로 나타난다. 이 두 위상에서 MJO의 강도가 2보다 작은 경우 양의 아노말리가 나타나는 반면에 2보다 큰 경우 음의 강수 아노말리가 나타났다. MJO 강도가 클 때 나타나는 이러한 음의 강수 아노말리는 한반도가 고기압성 아노말리 영역에 놓이고 북풍계열의 바람에 의한 한랭 건조한 바람의 이류에 의해 형성된다. 또한 본 연구에서는 여름철 ISO의 동진 및 북진 전파 위상에 따른 강수와 순환의 반응을 연구하였다.

Keywords

References

  1. Donald, A., Meinke, R., Power, B., Maia, A. de H.N., Wheeler, M.C., White, N., Stone, R.C., and Ribbe, J., 2006, Near-global impact of the Madden-Julian Oscillation on rainfall. Geophysical Research Letters, 33, L09704, doi:10.1029/2005GL025155
  2. Jeong, J-H., Ho, C.-H., Kim, B.-M., and Kwon, W.-T., 2005, Influence of the Madden-Julian Oscillation on wintertime surface air temperature and cold surges in East Asia. Journal of Geophysical Research, 110, D11104, doi:10.1029/2004JD005408
  3. Jeong, J.-H., Kim, B.-M., Ho, C.-H., and Noh, Y.-H., 2008, Systematic variation in wintertime precipitation in East Asia by MJO-induced extratropical vertical motion. Journal of Climate, 21, 788-801 https://doi.org/10.1175/2007JCLI1801.1
  4. Kemball-Cook, S. and Weare, B.C., 2001, The onset of convection in the Madden-Julian Oscillation. Journal of Climate, 14, 780-793 https://doi.org/10.1175/1520-0442(2001)014<0780:TOOCIT>2.0.CO;2
  5. Knutson, T.R. and Weickmann, K.M., 1987, 30-60 Day Atmospheric oscillations: Composite life cycles of convection and circulation anomalies. Monthly Weather Review, 115, 1407-1436 https://doi.org/10.1175/1520-0493(1987)115<1407:DAOCLC>2.0.CO;2
  6. Lau, N.-C. and Lau, K.-M., 1986, The structure and propagation of intraseaonal oscillations appearing in a GFDL general circulation model. Journal of the Atmospheric Sciences, 43, 2023-2047 https://doi.org/10.1175/1520-0469(1986)043<2023:TSAPOI>2.0.CO;2
  7. Liebmann, B. and Smith, C.A., 1996, Description of a complete (interpolated) outgoing longwave radiation dataset. Bulletin of the American Meteorological Society, 77, 1275-1277
  8. Madden, R.A. and Julian, P.R., 1971, Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific. Journal of the Atmospheric Sciences, 28, 702-708 https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2
  9. Madden, R.A. and Julian, P.R., 1972, Description of global-scale circulation cells in the tropics with a 40-50 day period. Journal of the Atmospheric Sciences, 29, 1109-1123 https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2
  10. Madden, R.A. and Julian, P.R., 1994, Observations of the 40-50 day tropical oscillation: A Review. Monthly Weather Review, 122, 814-837 https://doi.org/10.1175/1520-0493(1994)122<0814:OOTDTO>2.0.CO;2
  11. Matthews, A.J., 2000, Propagation mechanisms for the Madden-Julian Oscillation. Quarterly Journal of the Royal Meteorological Society, 126, 2637-2652 https://doi.org/10.1002/qj.49712656902
  12. Matthews, A.J., 2004, Atmospheric response to observed intraseasonal tropical sea surface temperature anomalies. Geophysical Research Letters, 31, L14107, doi:10.1029/2004GL020474
  13. Seo, K.-H. and Kim, K.-Y., 2003, Propagation and Initiation mechanisms of the Madden-Julian Oscillation. Journal of Geophysical Research, 108, 4384, doi:10.102912002JD002876 https://doi.org/10.1029/2002JD002876
  14. Seo, K.-H., Schemm, J.-K.E., Jones, C., and Moorthi, S., 2005, Forecast Skill of the tropical intraseasonal oscillation in the NCEP GFS dynamical extended range forecasts. Climate Dynamics, 25, 265-284 https://doi.org/10.1007/s00382-005-0035-2
  15. Seo, K.-H., Schemm, J.-K.E., Wang, W., and Kumar, A., 2007, The boreal summer intraseasonal oscillation simulated in the NCEP Climate Forecast System (CFS): The effect of sea surface temperature. Monthly Weather Review, 135, 1807-1827 https://doi.org/10.1175/MWR3369.1
  16. Seo, K.-H. and Xue, Y., 2005, MJO-related oceanic Kelvin waves and the ENSO cycle: A study with the NCEP Global Ocean Data Assimilation. Geophysical Research Letters, 32, L07712, doi:10.1029/2005GL022511
  17. Wheeler, M.C. and Hendon, H.H., 2004, An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Monthly Weather Review, 132, 1917-1932 https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2

Cited by

  1. Changes in weather and climate extremes over Korea and possible causes: A review vol.51, pp.2, 2015, https://doi.org/10.1007/s13143-015-0066-5