
Tae Cheol Seo¹, Han Cheol Rheo¹, Mi Young Rho¹, Kyeong Lee Choi¹, Hyung Kwon Yun², and Changhoo Chun¹*¹

¹Protected Horticulture Research Station, NIHHS, RDA, Busan 618-800, Korea
²Vegetable Research Division, NIHHS, RDA, Suwon 440-706, Korea
¹Department of Plant Science and Research Institute for Agricultural Life Sciences, Seoul National University, Seoul 151-921, Korea

Abstract. To determine the effects of circulation frequency of nutrient solution, three frequencies of 10min. on/10min. off; 10min. on/110min. off; and 10min. on/1,430min. off. treatments were applied to leafy vegetable production using deep flow technique (DFT) systems and their growth and phytonutrient content were investigated. In the 10min. on/1,430min. off treatment, dissolved oxygen concentration (DOC) 17 days after treatment decreased to 2.8 mg L⁻¹, known to be a low DOC that causes hypoxia, and thereafter decreased to 1.5 mg L⁻¹ 20 days after treatment. Fresh weight of 7 leafy vegetables in the 10min. on/1,430min. off treatment was lower by 0–24% than those in the 10min. on/110min. off treatment, and those in the 10min. on/10min. off was higher by ~2–34% than those in the 10min. on/110min. off. treatment as control. As the more frequent circulation was applied, the higher phosphorous content and the lower carbon to nitrogen ratio (C/N ratio) and total ascorbic acid contents were resulted. Results indicate that the circulation frequency of 10min. on/110min. off could be recommended for the production of the tested leafy vegetables in DFT systems.

Key words: circulation frequency, dissolved oxygen, leafy vegetables, phytonutrients

서 론

*Corresponding author: changhoo@snu.ac.kr
Received June 5, 2009; Revised June 17, 2009; Accepted June 22, 2009

112
양액의 순환주기가 담액수경 엽채류의 용존산소 농도, 생육 및 식물영양소의 함량에 미치는 영향

(Chun과 Lee, 1991; Masuda 등, 1990)이 있다. 이 방법은 외부의 공기가 물속에 녹아 들어가서 용존산소 를 높일 뿐 아니라 양액을 순환시스템으로써 순환되는 양액과 뿌리가 자주 접촉할 수 있는 기회를 부여할 수 있다. 그러나 자주 순환시키면 순환관조의 구동 비용이 높아지므로 적절하게 조절하는 것이 경제적이다.

따라서 본 연구는 담액수경으로 엽채류를 재배할 때 양액의 순환주기에 따른 용존산소 농도의 변화를 검토 하고 생육, 무기양분 흡수, 그리고 비타민 C 함량에 미치는 효과를 검토하여 수중재배 엽채류의 안정생산을 위한 기초자료를 얻고자 하였다.

재료 및 방법

본 실험은 5월 3일부터 5월 27일까지 원예연구소 유효온실에서 수행되었다. 실험 재료는 Table 1과 같 다. DFT 시스템은 길이 3.4m, 폭 0.9m, 높이 0.9m, 그리고 베드 길이 10cm의 스테인레스 설제의 베드 아래에 약 450L의 FRP 양액 탱크와 1/4HP 양액 순 환관조가 부착된 일체형 시스템으로 구성하였다. 배양 액은 원시배양액 0.5배액으로 조성하였는데 양액의 최 초 용량농도는 EC 1.4~1.5dS·m⁻¹였으며, pH는 7.2~ 7.3 범위였다. 정식하기 전에 용존산소 측정 시스템 (OxyGuard 8, (주)명산양양산업, 한국)을 설치하였으며, 시온온을 하여 표시 값이 안정적으로 측정되는 것을 확인한 후 사용하였다. 유효온실에서 162공 플러그 용 기에서 30일간 용액의 표의 근근부를 흉색 부식포로 씨서 베드에 장식하였다. 이후 처리기간 중의 배양 액 내 용존산소 농도를 모니터링 하였으며, 제배 기간 중 배양액의 pH, EC는 휴대용 pH 측정기(HM-14P, TOA, Japan)와 EC 측정기(CM-14P, TOA, Japan)로 오전 9~10시경에 측정을 하였다. 양액 순환주기 처리는 Table 2와 같이 10분 간격 24시간 타이머를 이용하여 양액 순환관조의 작동을 조절하였다. 실험구는 2 반복으로 완전일의 배치하였다.

정식 20일 후에 생육조사를 하였고 생육조사한 시료 를 건조기에 넣어 건조한 후 C, N 분석과 식물체 무기성분 분석에 이용하였다. C/N은 건조 시료 0.2g을 평형하여 CNS 분석기(CNS-2000, Recco, USA)로 분석 하였으며, 식물체 무기 성분은 식물체 시료 0.5g을 유리 삼각 플라스틱에 평형하여 넣고 100도 내의 가열관 위에서 분해액의 ternary solution(HNO₃: HClO₄:H₂SO₄, 10:4:1, v/v) 10mL을 넣어 습식 분해 하여 냉각시킨 후, 플라스틱 안의 분해된 시료를 50~70°C 정도의 종류수로 끓여 100mL로 정량한 다음, P는 vanadate법으로 비석게(Lambda 18, Perkin Elmer, USA)를 이용하여 각각 측정하였고, 양이온들은 원자흡광분광광도계(Model 3300, Perkin Elmer, USA)로 분석하였다.

총 비타민 C 함량을 분석하기 위해 정식 23일 후 에 처리군과 작물군 1주씩 식물체를 채취하였다. 잔계 션 잔 조직 0.5g을 3학기로 50mL 플라스틱 용기에

Table 1. Plant materials used in this experiment.

<table>
<thead>
<tr>
<th>Genus</th>
<th>Species</th>
<th>Englishname and cultivar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chenopodiceae</td>
<td>Spinacia Oleracea L.</td>
<td>Spinach 'Banchuparuk'</td>
</tr>
<tr>
<td></td>
<td>Beta vulgaris L.</td>
<td>Swiss chard 'Rubired'</td>
</tr>
<tr>
<td>Compositae</td>
<td>Lactuca sativa L.</td>
<td>Leaf lettuce 'Hanbatcheongchima'</td>
</tr>
<tr>
<td></td>
<td>Chrysanthemum coronarium L.</td>
<td>Edible chrysanthemum 'Jungyeopssukgt'</td>
</tr>
<tr>
<td></td>
<td>Cichorium intybus L.</td>
<td>Chicory 'Nonguchicy'</td>
</tr>
<tr>
<td></td>
<td>Cichorium endivia L.</td>
<td>Endive 'Jungyeopendive'</td>
</tr>
<tr>
<td>Cruciferae</td>
<td>Brassica rapa L.</td>
<td>Pak-choi 'Seoulchoneggyeongchae'</td>
</tr>
</tbody>
</table>

Table 2. Explanation of the circulation frequency treatment.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Circulated min per day</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>720minutes (10min. × 72times/day)</td>
<td>On/off 10/10min.</td>
</tr>
<tr>
<td>T2</td>
<td>120minutes (10min. × 12times/day)</td>
<td>On/off 10/10min.</td>
</tr>
<tr>
<td>T3</td>
<td>10minutes (10min. × 1time/day)</td>
<td>On/off 10/1,430min.</td>
</tr>
</tbody>
</table>
평균하여 넣고 2.5% meta-phosphoric acid 용액
25mL를 넣은 후 균질기로 균질하였다. 균질된 시료를
원심분리용 튜브에 넣고 원심분리기 4℃, 10,000g, 조
건으로 10분간 원심 분리하였다. 상정액을 0.45
PVDF μm filter(Whatman)로 여과하여 HPLC용 샘
플병에 담았다. 분석은 HPLC(Breeze system, Waters, USA)로 하였으며, 분석 조건은 symmetry C18(5μm,
3.9 × 150mm) 컬럼(W12191L-028, Waters, USA),
파랑 254nm, 유속 0.5mL · min⁻¹, 전기 용액은 20μM
KH₂PO₄액과 메탄올(90:10, v/v)로 하였다. KH₂PO₄액
은 H₂PO₄로 pH를 2.8로 맞추어 진공 필터에 FP-
VerticleⅠTM membrane filter(FP-450, PALL, USA)로
여과한 후 조음파로 가스를 제거하여 사용하였다. 비타
민 C 표준 용액은 100mg · L⁻¹ L-асcorbic acid(A-
5960, Sigma)로 하였다. 처리 효과에 대한 통계분석은
SAS 통계 프로그램(SAS 9.1)을 이용하였다.

결과 및 고찰

Fig. 1은 5월 7일부터 5월 23일까지의 양액 순환주
기에 따른 용조산소 농도의 변화를 DO 모니터링 시
스템으로 연속적으로 측정한 결과이다. 용조산소 농도
는 경비 기간이 경과함에 따라 감소하는 양상을 나타
내었고, 처리별로는 10분 순환/10분 경지 처리 구는
최고 10.0mg · min⁻¹, 최저 7.5mg · min⁻¹ 그리고 평균
8.7 ± 0.54mg · min⁻¹로 가장 높게 유지되었다. 10분 순
환/110분 경지 처리 구는 최고 9.0mg · min⁻¹, 최저
3.4mg · min⁻¹ 그리고 평균 6.7 ± 1.30mg · min⁻¹ 이었
으며, 10분 순환/1,430분 경지 처리구는 최고 9.6mg ·
min⁻¹, 최저 1.5mg · min⁻¹ 그리고 평균 6.4 ± 2.07mg ·
min⁻¹로 측정되었다. 경지 후 13일부터 10분 순환/110
분 경지 처리와 10분 순환/1,430분 경지 처리에서 용
조산소 농도 차이가 커지기 시작했다.
모든 실험 작물에서 양액의 순환주기수가 짧은 처리에
서 생체중이 무거운 경향을 나타냈다. 대체 근장도 순
환주기가 10분 순환/10분 경지 처리구에 공시한 모
든 작물에서 길었다(Fig. 2). 이러한 결과는 오전 9시

Fig. 2. Shoot fresh weight (left) and the longest root length (right) of 7 leafy vegetables grown for 20 days after transplanting in DFT systems as affected by the circulation frequency of nutrient solution.
양액순환주기가 담액수경 억제물의 용존산소 농도, 생육 및 식물영양소의 함량에 미치는 영향

경에 하루에 10분간 순환한 처리구에서 처리 후 17일 이후부터는 저산소 조건(DOC 2.8mg·min⁻¹)에 노출되는 시간이 점차 많아졌기 때문에 생육이 억제된 것으로 판단되었다. 또한 이것은 저산소 조건이 되면 뿌리의 길이 심장이 억제된다는 Huang 등(1997)의 보고와 일치하였다. Verslues 등(1998)은 근권의 산소에 대한 식물 뿌리의 반응은 산소의 농도와 다름없이 근권의 산소 이용성과도 관련되어 있다고 하였다. 그러나 본 실험 조건에서는 하루에 10분 순환하여도 처리 후 20일 경과 시까지의 지상부와 지하부의 생육 억제가 심하지는 않았다. 이것은 NO를 통치하여 저산소 조건 처리에서 자란 뿌리는 해부학이나 형태적으로 차이와 같은 무통기에 의한 반응과는 다르며(Wiengweera 등, 1997), 하루 한번의 양액 순환이 산소의 이용성을 높임과 동시에 호흡에 의해 발생된 CO와 저산소 조건에서 발생되는 유해한 acetaldehyde나 ethylene의 농도를 어느 정도 낮추었기 때문으로 판단되었다(Mustroph 등, 2006; Shinano 등, 2008).

식물체 건물 중의 C/N은 양액 순환주기가 긴 처리에서 높은 경향이었지만, 통계적인 유의성은 없었다(Fig. 3). 총 비타민 C 함량은 시금치, 콩, 콩, 청정채에서 차이가 있었으며, 양액 순환주기 10분 순환/1,430분 정지 처리에서 높았다(Fig. 4). 비타민 C는 고효율에서도 당이 전구체가 되어 생성되는 임산화물질로 알려져 있는데(Ishikawa와 Shigeoka, 2008; Wheeler 등, 1998), 산소 부족에 의해 생성되는 활성 산소의 산화적 스트레스 억제에도 관련되어 있으나 산소 부족 스트레스 조건에서 임산화물질의 상태에 대해서는 상반된 견해가 많다(Biemelt 등, 1998; Blokhina 등, 2003).

본 실험에서 하루에 10분간 양액을 순환한 처리구에서 C/N은 높은 경향을 보였고 관련하여 탄수화물인 당의 함량도 높았으므로 추천된다.

양액 순환주기에 따른 식물체 건물 중의 무기물 함량은 차이가 있었다(Table 3). P 함량은 모든 작물에서 10분 순환/10분 정지 처리에서 높았다. 옥수수의 경우 채내 P 함량은 근권 P의 이용성과 생장에 의한 식물체내 농도의 회복에 의해 결정되며(Chassot와 Richner, 2002), 상추의 경우 P를 절엽시키면 내생에

Fig. 3. Carbon and nitrogen content, and C/N ratio of 7 leafy vegetables grown for 20 days after transplanting in DFT systems as affected by the circulation frequency of nutrient solution.

Fig. 4. Total ascorbic acid content of 7 leafy vegetables grown for 23 days after transplanting in DFT systems as affected by the circulation frequency of nutrient solution.
Table 3. Mineral contents of 7 leafy vegetables grown for 20 days after transplanting in DFT systems as affected by the circulation frequency of nutrient solution.

<table>
<thead>
<tr>
<th>Crop</th>
<th>Circulation time (min, on/off)</th>
<th>P (%)</th>
<th>K (%)</th>
<th>Ca (%)</th>
<th>Mg (%)</th>
<th>Fe (mg kg⁻¹, DW)</th>
<th>Mn (mg kg⁻¹, DW)</th>
<th>Zn (mg kg⁻¹, DW)</th>
<th>Cu (mg kg⁻¹, DW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spinach</td>
<td>10/1,430</td>
<td>1.12b</td>
<td>3.40a</td>
<td>2.10c</td>
<td>0.46c</td>
<td>294a</td>
<td>303a</td>
<td>151a</td>
<td>53a</td>
</tr>
<tr>
<td></td>
<td>10/110</td>
<td>1.28ab</td>
<td>3.75a</td>
<td>3.19b</td>
<td>0.78b</td>
<td>120a</td>
<td>51a</td>
<td>48a</td>
<td>17a</td>
</tr>
<tr>
<td></td>
<td>10/10</td>
<td>1.36a</td>
<td>6.28a</td>
<td>3.57a</td>
<td>0.89a</td>
<td>146a</td>
<td>129a</td>
<td>81a</td>
<td>19a</td>
</tr>
<tr>
<td>Swiss chard</td>
<td>10/1,430</td>
<td>0.83b</td>
<td>5.83a</td>
<td>4.06c</td>
<td>0.35c</td>
<td>211a</td>
<td>139a</td>
<td>110a</td>
<td>28a</td>
</tr>
<tr>
<td></td>
<td>10/110</td>
<td>1.04a</td>
<td>5.17b</td>
<td>5.56a</td>
<td>0.82b</td>
<td>146a</td>
<td>128a</td>
<td>73a</td>
<td>27a</td>
</tr>
<tr>
<td></td>
<td>10/10</td>
<td>1.02a</td>
<td>4.74c</td>
<td>4.92b</td>
<td>1.03a</td>
<td>152a</td>
<td>146a</td>
<td>40a</td>
<td>20a</td>
</tr>
<tr>
<td>Leaf lettuce</td>
<td>10/1,430</td>
<td>1.60b</td>
<td>7.77a</td>
<td>2.50c</td>
<td>0.24b</td>
<td>190a</td>
<td>214a</td>
<td>132a</td>
<td>22a</td>
</tr>
<tr>
<td></td>
<td>10/110</td>
<td>2.00a</td>
<td>6.75a</td>
<td>2.94a</td>
<td>0.28a</td>
<td>234a</td>
<td>180a</td>
<td>163a</td>
<td>27a</td>
</tr>
<tr>
<td></td>
<td>10/10</td>
<td>2.09a</td>
<td>5.67a</td>
<td>2.66b</td>
<td>0.29a</td>
<td>211a</td>
<td>151a</td>
<td>69a</td>
<td>21a</td>
</tr>
<tr>
<td>Edible chrysanthemum</td>
<td>10/1,430</td>
<td>1.13c</td>
<td>5.49a</td>
<td>3.05a</td>
<td>0.30c</td>
<td>281a</td>
<td>104a</td>
<td>84a</td>
<td>25a</td>
</tr>
<tr>
<td></td>
<td>10/110</td>
<td>1.84a</td>
<td>5.05a</td>
<td>2.97a</td>
<td>0.37a</td>
<td>236a</td>
<td>101a</td>
<td>79a</td>
<td>21a</td>
</tr>
<tr>
<td></td>
<td>10/10</td>
<td>1.27b</td>
<td>5.64a</td>
<td>2.88a</td>
<td>0.33b</td>
<td>197a</td>
<td>120a</td>
<td>76a</td>
<td>22a</td>
</tr>
<tr>
<td>Chicory</td>
<td>10/1,430</td>
<td>1.63b</td>
<td>6.20a</td>
<td>3.38a</td>
<td>0.20a</td>
<td>176a</td>
<td>206a</td>
<td>93a</td>
<td>20a</td>
</tr>
<tr>
<td></td>
<td>10/110</td>
<td>2.00a</td>
<td>5.37a</td>
<td>3.78a</td>
<td>0.26a</td>
<td>176a</td>
<td>114a</td>
<td>58a</td>
<td>18a</td>
</tr>
<tr>
<td></td>
<td>10/10</td>
<td>2.07a</td>
<td>4.92a</td>
<td>3.40a</td>
<td>0.27a</td>
<td>193a</td>
<td>96a</td>
<td>73a</td>
<td>17a</td>
</tr>
<tr>
<td>Endive</td>
<td>10/1,430</td>
<td>1.31b</td>
<td>5.35a</td>
<td>2.95a</td>
<td>0.28a</td>
<td>188a</td>
<td>164a</td>
<td>154a</td>
<td>32a</td>
</tr>
<tr>
<td></td>
<td>10/110</td>
<td>1.22c</td>
<td>5.60a</td>
<td>3.15a</td>
<td>0.23b</td>
<td>246a</td>
<td>127a</td>
<td>99a</td>
<td>21b</td>
</tr>
<tr>
<td></td>
<td>10/10</td>
<td>1.40a</td>
<td>5.57a</td>
<td>2.03b</td>
<td>0.28a</td>
<td>208a</td>
<td>99a</td>
<td>54a</td>
<td>20b</td>
</tr>
<tr>
<td>Pak-choi</td>
<td>10/1,430</td>
<td>1.27b</td>
<td>5.82a</td>
<td>7.18a</td>
<td>0.54a</td>
<td>201a</td>
<td>159a</td>
<td>85a</td>
<td>22a</td>
</tr>
<tr>
<td></td>
<td>10/110</td>
<td>1.49a</td>
<td>4.15a</td>
<td>7.72a</td>
<td>0.59a</td>
<td>216a</td>
<td>118a</td>
<td>58a</td>
<td>25a</td>
</tr>
<tr>
<td></td>
<td>10/10</td>
<td>1.55a</td>
<td>3.84a</td>
<td>6.99a</td>
<td>0.58a</td>
<td>155a</td>
<td>109a</td>
<td>54a</td>
<td>25a</td>
</tr>
</tbody>
</table>

*Mean separation within columns for each crop by Duncan’s multiple range test, P = 0.05.

이상의 결과, 담액수정재배 시 하루에 한 번의 양액 순환은 응온산소 농도를 점차적으로 감소시키려 조달조 안정, 전개적 용액의 흡수를 억제하는 것을 알 수 있다. 또한 P는 20분마다 지주 양액 순환을 하기로 하였는데, 2시간에 10분 정도의 양액 순환에 비해 생육이나 양액 흡수 면에서 뚜렷한 효과가 없을 것으로 판단할 수 있었다. 따라서 2시간에 10분없이의 순환으로도 엽체류의 생육이나 무기양분 흡수를 억제하지 않는 응온산소 농도가 유지되며, 20분마다 지주 양액 순환에 비해 생육이나 양액 흡수 면에서 뚜렷한 효과가 없을 것으로 생각할 수 있었다. 그러나 엽체류 담액수정재배 시 계절에 따라서 양액의 온도가 변화되므로 이에 따라 양액 순환 효과와 응온산소 농도 효과 등에 대한 더욱 정밀한 검토가 요구된다.

적 요

주요 엽체류 7종의 주런 임정생산을 위한 담액수정
양액의 순환주기가 담액수정 엽체류의 용존산소 농도, 생육 및 식물영양소의 함량에 미치는 영향

재배 시 양액의 순환주기가 양액의 용존산소 농도, 엽체류의 생육, 그리고 식물영양소의 함량에 미치는 효과를 검토한 결과, 양액을 1일 10분 순환 처리구는 정식 13일 후 용존산소 농도가 급격하게 떨어지고 17일 후에는 2.8mg·L⁻¹, 20일 후에는 최저 1.5mg·L⁻¹까지 낮아졌다. 처리 20일 후 7가지 엽체류의 생체중은 1일 10분 처리구에서는 대조군인 10분 순환/110분 정지 처리구에 비해 0~24% 범위에서 낮아졌으며, 10분 순환/10분 정지 처리구에서는 -2~34% 증가하였다. 양액의 순환주기가 줄을 수록 식물체 엽내 P의 함량이 증가하였으며, 식물체의 Ca/N 용량과 비타민 C 함량은 감소하였다. 이상의 결과, 담액수정 엽체류의 안정적인 생육과 식물영양소의 영향을 위해서 2시간에 10분 정도의 양액 순환 처리가 효율적이었다.

주제어 : 순환주기, 식물영양소, 엽체류, 용존산소

인용문헌