Toxigenic Bacilli Associated with Food Poisoning

  • Oh, Mi-Hwa (Food Science and Technology, School of Chemical Engineering and Industrial Chemistry, University of New South Wales) ;
  • Cox, Julian M. (National Institute of Animal Science, Rural Development Administration)
  • Published : 2009.06.30

Abstract

The genus Bacillus includes a variety of diverse bacterial species, which are widespread throughout the environment due to their ubiquitous nature. A well-known member of the genus, Bacillus cereus, is a food poisoning bacterium causing both emetic and diarrhoeal disease. Other Bacillus species, particularly B. subtilis, B. licheniformis, B. pumilus, and B. thuringiensis, have also recently been recognized as causative agents of food poisoning. However, reviews and research pertaining to bacilli have focused on B. cereus. Here, we review the literature regarding the potentially toxigenic Bacillus species and the toxins produced that are associated with food poisoning.

Keywords

References

  1. Andersson A, Ronner U, Granum PE. What problems does the food industry have with the spore-forming pathogens Bacillus cereus and Clostridium perfringens? Int. J. Food Microbiol. 28: 145-155 (1995) https://doi.org/10.1016/0168-1605(95)00053-4
  2. Karmat AS, Nerkkar DP, Nair PM. Bacillus cereus in some Indian foods, incidence and antibiotic, heat and radiation resistance. J. Food Safety 10: 31-41 (1989) https://doi.org/10.1111/j.1745-4565.1989.tb00005.x
  3. Larsen HD, Jorgensen K. Growth of Bacillus cereus in pasteurized milk products. Int. J. Food Microbiol. 46: 173-176 (1999) https://doi.org/10.1016/S0168-1605(98)00188-3
  4. Granum PE, Ronner U. The adhesion of Bacillus cereus spores to epithelial cells might be an additional virulence mechanism. Int. J. Food Microbiol. 39: 93-99 (1998) https://doi.org/10.1016/S0168-1605(97)00121-9
  5. Heyndrickx M, Scheldeman P. Bacilli associated with spoilage in dairy products and other food. pp. 64-79. In: Applications and Systematics of Bacillus and Relatives. Berkeley R, Heyndrickx M, Logan N, De Vos P (eds). Blackwell Science Ltd., London, UK (2002)
  6. Peng JS, Tasi WC, Chou CC. Surface characteristics of Bacillus cereus and its adhension to stainless steel. Int. J. Food Microbiol. 65: 105-111 (2001) https://doi.org/10.1016/S0168-1605(00)00517-1
  7. Gordon RE. One hundred and seven years of the genus Bacillus. pp. 1-15. In: The Aerobic Endosporeforming Bacteria. Berkeley RCW, Goodfellow M (eds). Academic Press, London, UK (1981)
  8. Gibson T, Gordon RE. Bacillus. pp. 529-550. In: Bergey's Manual of Determinative Bacteriology. Buchanan RE, Gibbons NE (eds). Williams and Wilkins, Baltimore, MD, USA (1974)
  9. Berkeley RCW. Whither Bacillus? pp. 1-7. In: Applications and Systematics of Bacillus and Relatives. Berkeley R, Heyndrickx M, Logan N, De Vos P (eds). Blackwell Science Ltd., London, UK (2002)
  10. Jensen GB, Hansen BM, Eilenberg J, Mahillon J. The hidden lifestyles of Bacillus cereus and relatives. Environ. Microbiol. 5: 631-640 (2003) https://doi.org/10.1046/j.1462-2920.2003.00461.x
  11. Ash C, Farrow JAE, Dorsch M, Stackebrandt E, Collins MD. Comparative analysis of Bacillus anthracis, Bacillus cereus, and related species on the basis of reverse transcriptase sequencing of 16S rRNA. Int. J. Syst. Bacteriol. 41: 343-346 (1991) https://doi.org/10.1099/00207713-41-3-343
  12. Ash C, Farrow JAE, Wallbanks S, Collins MD. Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small subunit-ribosomal RNA sequences. Lett. Appl. Microbiol. 13: 202-206 (1991) https://doi.org/10.1111/j.1472-765X.1991.tb00608.x
  13. Jenson I. Detection by classical cultural techniques. pp. 149-158. In: Encyclopedia of Food Microbiology. Robinson RK, Batt CA, Patel PD (eds). Academic Press, Harcourt Science and Technology Company, London, UK (2000)
  14. Jenson I, Moir CJ. Bacillus cereus and other Bacillus species. pp. 445-478. In: Foodborne Microorganisms of Public Health Significance. Hocking AD (ed). Southwood Press, Sydney, Australia (2003)
  15. Nakamura LK. Taxomomic relationships of black-pigmented Bacillus subtilis strains and a proposal for Bacillus atrophaeus sp. nov. Int. J. Syst. Bacteriol. 39: 295-300 (1989) https://doi.org/10.1099/00207713-39-3-295
  16. Robert MS, Nakamura LK, Cohan FC. Bacillus mojavensis sp. nov., distinguishable from Bacillus subtilis by sexual isolation, divergence in DNA sequence, and difference in fatty acid composition. Int. J. Syst. Bacteriol. 44: 256-264 (1994) https://doi.org/10.1099/00207713-44-2-256
  17. Robert MS, Nakamura LK, Cohan FC. Bacillus vallismortis sp. nov., a close relative of Bacillus subtilis, isolated from soil in Death Valley, California. Int. J. Syst. Bacteriol. 46: 470-475 (1996) https://doi.org/10.1099/00207713-46-2-470
  18. Priest FG. Isolation and identification of aerobic endospore-forming bacteria. pp. 27-56. In: Bacillus. Harwood CR (ed). Plenum Press, New York, NY, USA (1989)
  19. Jacquette CB, Beuchat LR. Survival and growth of psychrotrophic Bacillus cereus in dry and reconstituted infant rice cereal. J. Food Protect. 61: 1629-1635 (1998) https://doi.org/10.4315/0362-028X-61.12.1629
  20. Pao S, Khalid MF, Kalantari A. Inhibiting the growth of Bacillus cereus in raw sprouts and cooked rice using red clover seeds. Int. J. Food Safety 8: 44-48 (2006)
  21. Rosenkvist H, Hansen A. Contamination profiles and characterisation of Bacillus species in wheat bread and raw materials for bread production. Int. J. Food Microbiol. 26: 353-363 (1995) https://doi.org/10.1016/0168-1605(94)00147-X
  22. Haque MA, Rus NJ. Strains of Bacillus cereus vary in the phenotypic adaptation of their membrane lipid composition in response to low water activity, reduced temperature, and growth in rice starch. Microbiology 150: 1397-1404 (2004) https://doi.org/10.1099/mic.0.26767-0
  23. Lee PK, Buswell JA, Shinagawa K. Distribution of toxigenic Bacillus cereus in rice samples marketed in Hong Kong. World J. Microb. Biot. 11: 696-698 (1995) https://doi.org/10.1007/BF00361024
  24. Sarrías JA, Valero M, Salmerón MC. Enumeration, isolation, and characterization of Bacillus cereus strains from Spanish raw rice source. Food Microbiol. 19: 589-595 (2002) https://doi.org/10.1006/fmic.2002.0514
  25. Larsen HD, Jorgensen K. The occurrence of Bacillus cereus in Danish pasteurized milk. Int. J. Food Microbiol. 34: 179-186 (1997) https://doi.org/10.1016/S0168-1605(96)01182-8
  26. Griffiths MW. Bacillus cereus in liquid milk and other milk products. Bull. Int. Dairy Fed. 275: 36-39 (1992)
  27. Stadhouders J, Driessen F. Other milk products. Bull. Int. Dairy Fed. 275: 40-45 (1992)
  28. Ahmed I, Yokota A, Yamazoe A, Fujiwara T. Proposal of Lysinibacillus boronitolerans gen. nov., and transfer of Bacillus fusiformis to Lysinibacillus fusiformis comb. nov. and Bacillus sphaericus to Lysinibacillus sphaericus comb. nov. Int. J. Syst. Evol. Microbiol. 57: 1117-1125 (2007) https://doi.org/10.1099/ijs.0.63867-0
  29. Nieminen T, Rintaluoma N, Andersson M, Taimisto AM, Ali-Vehmas T, Seppälä A, Priha O, Salkinoja-Salonen M. Toxinogenic Bacillus pumilus and Bacillus licheniformis from mastitic milk. Vet. Microbiol. 124: 329-339 (2007) https://doi.org/10.1016/j.vetmic.2007.05.015
  30. Scheldeman P, Pil A, Herman L, De Vos P, Heyndrickx M. Incidence and diversity of potentially highly heat-resistance spores isolated at dairy farms. Appl. Environ. Microb. 71: 1480-1494 (2005) https://doi.org/10.1128/AEM.71.3.1480-1494.2005
  31. Perttersson B, Lembke F, Hammer P, Stackebrandt E, Priest FG. Bacillus sporothermodurans, a new species producing highly heatresistant endospores. Int. J. Syst. Bacteriol. 46: 759-764 (1996) https://doi.org/10.1099/00207713-46-3-759
  32. Scheldeman P, Herman L, Foster S, Heyndrickx M. Bacillus sporothermodurans and other highly heat-resistant spore formers in milk. J. Appl. Microbiol. 101: 542-555 (2006) https://doi.org/10.1111/j.1365-2672.2006.02964.x
  33. Surtherland AD, Murdoch R. Seasonal occurrence of psychrotrophic Bacillus species in raw milk, and studies on the interactions with mesophilic Bacillus spp. Int. J. Food Microbiol. 21: 279-292 (1994) https://doi.org/10.1016/0168-1605(94)90058-2
  34. Sorokulova IB, Reva ON, Smirnov VV, Pinchuk IV, Lapa SV, Urdaci MC. Genetic diversity and involvement in bread spoilage of Bacillus strains isolated from flour and ropy bread. Lett. Appl. Microbiol. 37: 169-173 (2003) https://doi.org/10.1046/j.1472-765X.2003.01372.x
  35. te Giffel M, Beumer RR, Leijendekkers S, Rombouts FM. Incidence of Bacillus cereus and Bacillus subtilis in food in Netherlands. Food Microbiol. 13: 53-59 (1996) https://doi.org/10.1006/fmic.1996.0007
  36. Agata N, Ohta M, Yokoyama K. Production of Bacillus cereus emetic toxin (cereulide) in various foods. Int. J. Food Microbiol. 73: 23-27 (2002) https://doi.org/10.1016/S0168-1605(01)00692-4
  37. Little CL, Barnes J, Mitchell RT. Microbiological quality of takeaway cooked rice and chicken sandwiches: Effectiveness of food hygiene training of the management. Commun. Dis. Public Health 5: 289-298 (2002)
  38. Nichols GL, Little CL, Mithani V, de Louvois J. The microbiological quality of cooked rice from restaurants and takeaway premises in the United Kingdom. J. Food Protect. 62: 877-882 (1999) https://doi.org/10.4315/0362-028X-62.8.877
  39. From C, Hormazabal V, Granum PE. Food poisoning associated with pumilacidin-producing Bacillus pumilus in rice. Int. J. Food Microbiol. 115: 319-324 (2007) https://doi.org/10.1016/0168-1605(92)90065-B
  40. McElroy DM, Jaykus L, Foegeding PM. Validation and analysis of modeled predictions of growth of Bacillus cereus spores in boiled rice. J. Food Protect. 63: 268-272 (2000) https://doi.org/10.4315/0362-028X-63.2.268
  41. Bahk GJ, Todd ECD, Hong CH, Oh DH, Ha SD. Exposure assessment for Bacillus cereus in ready-to-eat kimbab selling at stores. Food Control 18: 682-688 (2007) https://doi.org/10.1016/j.foodcont.2006.02.017
  42. Park SY, Choi JW, Yeon JH, Lee MJ, Oh DH, Hong CH, Bahk GJ, Woo GJ, Park JS, Ha SD. Assessment of contamination level of foodborne pathogens isolated in kimbab and its main ingredients in the process of preparation. Korean J. Food Sci. Technol. 37: 122-128 (2005)
  43. Rosenquist H, Smidt L, Andersen SR, Jensen GB, Wilcks A. Occurrence and significance of Bacillus cereus and Bacillus thuringiensis in ready-to-eat food. FEMS Microbiol. Lett. 250: 129-136 (2005) https://doi.org/10.1016/j.femsle.2005.06.054
  44. Driessen FM. Bacillus cereus in fermented milk and processed non fermented dairy foods. Bull. Int. Dairy Fed. 287: 11-15 (1993)
  45. Griffiths MW. Bacillus cereus in liquid milk and other milk products. Bull. Int. Dairy Fed. 275: 36-39 (1992)
  46. van Netten P, van de Moosdijk A, van Hoensel P, Mossel DAA, Perales I. Psychrotrophic strains of Bacillus cereus producing enterotoxin. J. Appl. Bacteriol. 69: 73-39 (1990) https://doi.org/10.1111/j.1365-2672.1990.tb02913.x
  47. Schlegelova J, Brychta J, Klimova E, Napravnikova E, Babak V. The prevalence of and resistance to antimicrobial agents of Bacillus cereus isolates from foodstuffs. Vet. Med. 11: 331-338 (2003)
  48. Szabo RA, Todd ECD, Rayman MK. Twenty-four hour isolation and confirmation of Bacillus cereus in foods. J. Food Protect. 47: 856-860 (1984) https://doi.org/10.4315/0362-028X-47.11.856
  49. van Netten P, Kramer JM. Media for the detection and enumeration of Bacillus cereus in foods: A review. Int. J. Food Microbiol. 17: 85-99 (1992) https://doi.org/10.1016/0168-1605(92)90108-F
  50. Holbrook R, Anderson JM. An improved selective and diagnostic medium for the isolation and enumeration of Bacillus cereus in food. Can. J. Microbiol. 26: 753-759 (1980) https://doi.org/10.1139/m80-131
  51. Peng H, Ford V, Framptom EW, Restaino L, Shelef LA, Spitz H. Isolation and enumeration of Bacillus cereus from foods on a novel chromogenic plating medium. Food Microbiol. 18: 231-238 (2001) https://doi.org/10.1006/fmic.2000.0369
  52. Schraft H, Griffiths MW. Specific oligonucleotide primers for detection of lecithinase-positive Bacillus spp. by PCR. Appl. Environ. Microb. 61: 98-102 (1995)
  53. Cox JM, Fleet GH. New directions in the microbiological analysis of foods. pp. 103-161. In: Foodborne Microorganisms of Public Health Significance. Hocking AD (ed). AIFST Inc. (NSW Branch) Food Microbiology Group, Sydney, Australia (2003)
  54. Fleet GH, Karalis T, Hawa A, Lukondeh T. A rapid method for enumerating Salmonella in milk powders. Lett. Appl. Microbiol. 13: 255-259 (1991) https://doi.org/10.1111/j.1472-765X.1991.tb00622.x
  55. Hawa SG, Morrison GJ, Fleet GH. Method to rapidly enumerate Salmonella on chicken carcasses. J. Food Protect. 47: 932-936 (1984) https://doi.org/10.4315/0362-028X-47.12.932
  56. Mossel DAA, Van Netten P, Pijper M. A centrifugation/quadrant plate technique for the simplified differential-bacteriological examination of adequately heat-processed foods. Lett. Appl. Microbiol. 13: 115-117 (1991) https://doi.org/10.1111/j.1472-765X.1991.tb00585.x
  57. Sharpe AN. Detection of microorganisms in foods: Principles of physical methods for separation and associated chemical and enzymological methods of detection. pp. 1734-1760. In: The Microbiological Safety and Quality of Food. Gould GW (ed). Aspen Publishers, Gaitherburg, MD, USA (2000)
  58. Bishop A. Bacillus thuringiensis Insecticides. pp. 160-175. In: Applications and Systematics of Bacillus and Relatives. Berkeley R, Heyndrickx M, Logan N, De Vos P (eds). Blackwell Science Ltd., London, UK (2002)
  59. Logan NA. Modern methods for identification. pp. 123-140. In: Applications and Systematics of Bacillus and Relatives. Berkeley R, Heyndrickx M, Logan N, De Vos P (eds). Blackwell Science Ltd., London, UK (2002)
  60. Farber JM. An introduction to the hows and whys of molecular typing. J. Food Protect. 59: 1091-1101 (1996) https://doi.org/10.4315/0362-028X-59.10.1091
  61. Graves LM, Swaminathan B, Hunter SB. Subtyping Listeria monocytogenes. pp. 279-297. In: Listeria, Listeriosis, and Food Safety. Marth EH (ed). Marcel Dekker, New York, NY, USA (1999)
  62. Wiedmann M. Molecular subtyping methods for Listeria monocytogenes. J. AOAC. Int. 85: 524-531 (2002)
  63. De Vos P. Nucleic acid analysis and SDS-PAGE of whole-cell proteins in Bacillus taxonomy. pp. 141-159. In: Applications and Systematics of Bacillus and Relatives. Berkeley R, Heyndrickx M, Logan N, De Vos P (eds). Blackwell Science Ltd., London, UK (2002)
  64. Zahner V, Momen H, Priest F. Serotype H5a and H5b are a major clone within mosquito-pathogenic strains of Bacillus sphaericus. Syst. Appl. Microbiol. 21: 162-170 (1998) https://doi.org/10.1016/S0723-2020(98)80020-9
  65. Carlson CR, Caugant DA, Kolsto AB. Genotypic diversity of Bacillus cereus and Bacillus thuringiensis strains. Appl. Environ. Microb. 60: 1719-1725 (1994)
  66. Helgason E, Okstad OA, Caugant DA, Johansen HA, Fouet A, Mock M, Hegna I, Kolsto AB. Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis – One species on the basis of genetic evidence. Appl. Environ. Microb. 66: 2627-2630 (2000) https://doi.org/10.1128/AEM.66.6.2627-2630.2000
  67. Beneduzi A, Peres D, da Costa PB, Bodanese Zanettini MH, Passaglia LMP. Genetic and phenotypic diversity of plant-growthpromoting bacilli isolated from wheat field in southern Brazil. Res. Microbiol. 159: 244-250 (2008) https://doi.org/10.1016/j.resmic.2008.03.003
  68. Harrell LJ, Andersen GL, Wilson KH. Genetic variability of Bacillus anthracis and related species. J. Clin. Microbiol. 33: 1847-1850 (1995)
  69. Liu PYF, Ke SC, Chen SL. Use of pulsed field electrophoresis to investigate a pseudo-outbreak of Bacillus cereus in a pediatric unit. J. Clin. Microbiol. 35: 1533-1535 (1997)
  70. Schraft H, Steele M, McNab B, Odumeru J, Griffiths MW. Epidemiological typing of Bacillus spp. isolated from food. Appl. Environ. Microb. 62: 4229-4232 (1996)
  71. Bouchet V, Huot H, Goldstein R. Molecular genetic basis of ribotyping. Clin. Microbiol. Rev. 21: 262-273 (2008) https://doi.org/10.1128/CMR.00026-07
  72. Maukonen J, Matto J, Wirtanen G, Raaska L, Mattila-Sandholm T, Sarrela M. Methodologies for the characterization of microbes in industrial environments: A review. J. Ind. Microbiol. Biot. 30: 372-356 (2003) https://doi.org/10.1007/s10295-003-0056-y
  73. Martin IEM, Tyler SD, Tyler KD, Kharhpia R, Johnson WM. Evaluation of ribotyping as epidemiologic tool for typing Escherichia coli serogroup O157 isolates J. Clin. Microbiol. 34: 720-723 (1996)
  74. Salkinoja-Salonen MS, Vuorio R, Andersson MA, Kampfer P, Andersson MC, Honkanen-Buzalski T, Scoging AC. Toxigenic strains of Bacillus licheniformis related to food poisoning. Appl. Environ. Microb. 65: 4637-4645 (1999)
  75. Pacova Z, Svec P, Stenfors LP, Vyletelova M, Sedlacek I. Isolation of the psychrotolerant species Bacillus weihenstephanensis from raw cow's milk. Czech J. Anim. Sci. 48: 93-96 (2003)
  76. Suihko ML, Stackebrandt E. Identification of aerobic mesophilic bacilli isolated from board and paper products containing recycled fibres. J. Appl. Microbiol. 94: 25-34 (2003) https://doi.org/10.1046/j.1365-2672.2003.01803.x
  77. Akhurst RJ, Lyness EW, Zhang OY, Cooper DJ, Pinnock DE. A 16S rRNA gene oligonucleotide probe for identification of Bacillus isolates from sheep fleece. J. Invertebr. Pathol. 69: 24-30 (1997) https://doi.org/10.1006/jipa.1996.4610
  78. Kim YR, Batt CA. Riboprint and virulence gene patterns for Bacillus cereus and related species. J. Microbiol. Biotechn. 18: 1146-1155 (2008)
  79. Andersson A, Svensson B, Christiansson A, Ronner U. Comparison between automatic ribotyping and random amplified polymorphic DNA analysis of Bacillus cereus isolates from the dairy industry. Int. J. Food Microbiol. 47: 147-151 (1999) https://doi.org/10.1016/S0168-1605(99)00009-4
  80. Guillaume-Gentil O, Scheldeman P, Marugg J, Herman L, Joosten H, Heyndrickx M. Genetic heterogeneity in Bacillus sporothermodurans as demonstrated by ribotyping and repetitive extragenic palindromic-PCR fingerprinting. Appl. Environ. Microb. 68: 4216-4224 (2002) https://doi.org/10.1128/AEM.68.9.4216-4224.2002
  81. Shangkuan YH, Yang JF, Lin HC, Shaio MF. Comparison of PCRRFLP, ribotyping, and ERIC-PCR for typing Bacillus anthracis and Bacillus cereus strains. J. Appl. Microbiol. 89: 452-462 (2000) https://doi.org/10.1046/j.1365-2672.2000.01134.x
  82. Arbeit RD. Laboratory procedures for the epidemiologic analysis of microorganisms. pp. 190-204. In: Manual of Clinical Microbiology. Murray PR, Baron FJ, Pfaller MA, Tenover FC, Yolken RH (eds). ASM Press, Washington, DC, USA (1995)
  83. Maslow JN, Mulligan ME, Arbeit RD. Molecular epidemiology: Application of contemporary techniques to the typing of microorganisms. Clin. Infect. Dis. 17: 153-164 (1993) https://doi.org/10.1093/clinids/17.2.153
  84. Woodburn MA, Younsten AA, Hilu KH. Random amplified polymorphic DNA fingerprinting of mosquito-pathogenic and nonpathogenic strains of Bacillus sphaericus. Int. J. Syst. Bacteriol. 45: 212-217 (1995) https://doi.org/10.1099/00207713-45-2-212
  85. Brousseau R, Saint-Onge A, Prefontaine G, Masson L, Cabana J. Arbitrary primer polymerase chain reaction, a powerful method to identify Bacillus thuringiensis serovars and strains. Appl. Environ. Microb. 59: 114-119 (1993)
  86. Hansen BM, Damgaard PH, Eilenberg J, Pedersen JC. Molecular and phenotypic characterization of Bacillus thuringiensis isolated from leaves and insects. J. Invertebr. Pathol. 71: 106-114 (1998) https://doi.org/10.1006/jipa.1997.4712
  87. Ronimus RS, Parker LE, Morgan HW. The utilization of RAPDPCR for identifying thermophilic and mesophilic Bacillus species. FEMS Microbiol. Lett. 147: 75-79 (1997) https://doi.org/10.1111/j.1574-6968.1997.tb10223.x
  88. Ronimus RS, Parker LE, Turner N, Poudel S, Ruckert A, Morgan HW. A RAPD-based comparison of thermophilic bacilli from milk powders. Int. J. Food Microbiol. 85: 45-61 (2003) https://doi.org/10.1016/S0168-1605(02)00480-4
  89. Zhang YC, Ronimus RS, Turner N, Zhang Y, Morgan HW. Enumeration of thermophilic Bacillus species in composts and identification with a random amplification polymorphic DNA (RAPD) protocol. Syst. Appl. Microbiol. 25: 618-626 (2002) https://doi.org/10.1078/07232020260517760
  90. Daffonchio D, Borin S, Frova G, Gallo R, Mori E, Fani R, Sorlini C. A randomly amplified polymorphic DNA marker specific for the Bacillus cereus group is diagnostic for Bacillus anthracis. Appl. Environ. Microb. 65: 1298-1303 (1999)
  91. Sorokulova IB, Reva ON, Smirnov VV, Pinchuk IV, Lapa SV, Urdaci MC. Genetic diversity and involvement in bread spoilage of Bacillus strains isolated from flour and ropy bread. Lett. Appl. Microbiol. 37: 169-173 (2003) https://doi.org/10.1046/j.1472-765X.2003.01372.x
  92. Versalovic J, Koeuth T, Lupski JR. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 19: 6823-6831 (1991) https://doi.org/10.1093/nar/19.24.6823
  93. Lopez AC, Alippi AM. Phenotypic and genotypic diversity of Bacillus cereus isolates recovered from honey. Int. J. Food Microbiol. 117: 175-184 (2007) https://doi.org/10.1016/j.ijfoodmicro.2007.03.007
  94. Lopez AC, Alippi AM. Diversity of Bacillus megaterium isolates cultured from honeys. LWT−Food Sci. Technol. 42: 212-219 (2009) https://doi.org/10.1016/j.lwt.2008.05.001
  95. Miteva V, Selensk-Pobell S, Mitev V. Random and repetitive primer amplified polymorphic DNA analysis of Bacillus sphaericus. J. Appl. Microbiol. 86: 928-936 (1999) https://doi.org/10.1046/j.1365-2672.1999.00769.x
  96. Jonghe VD, Coorevits A, Vandroemme J, Heyrman J, Herman L, De Vos P, Heyndrickx M. Intraspecific genotypic diversity of Bacillus species from raw milk. Int. Dairy J. 18: 496-505 (2008) https://doi.org/10.1016/j.idairyj.2007.11.007
  97. Herman L, Heyndrickx M, Waes G. Typing of Bacillus sporothermodurans and other Bacillus species isolated from milk by repetitive element sequence based PCR. Lett. Appl. Microbiol. 26: 183-188 (1998) https://doi.org/10.1046/j.1472-765X.1998.00314.x
  98. Beattie SH, Williams AG. Detection of toxins. pp. 141-148. In: Encyclopedia of Food Microbiology. Robinson RK, Batt CA, Patel PD (eds). Academic Press, Harcourt Science and Technology Company, London, UK (2000)
  99. Granum PE, Lund T. Mini review: Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Lett. 157: 223-228 (1997) https://doi.org/10.1111/j.1574-6968.1997.tb12776.x
  100. Lund BM. Food-borne disease due to Bacillus and Clostridium species. Lancet 336: 982-986 (1990) https://doi.org/10.1016/0140-6736(90)92431-G
  101. Mahler H, Pasi A, Kramer JM, Schulte P, Scoging AC, Bar W, Krahenbuhl S. Fulminant liver failure in association with the emetic toxin of Bacillus cereus. New Engl. J. Med. 336: 1142-1148 (1997) https://doi.org/10.1056/NEJM199704173361604
  102. Lund T, De Buyser ML, Granum PE. A new enterotoxin from Bacillus cereus that may cause necrotic enteritis. Mol. Microbiol. 38: 254-261 (2000) https://doi.org/10.1046/j.1365-2958.2000.02147.x
  103. Anonymous. Food Standards News. The Newsletter of the Australia New Zealand Food Authority (ANZFA), Australia 36: 2 (2002)
  104. Granum PE, Baird-Parker TC. Bacillus spp. pp. 1029-1039. In: The Microbiological Safety and Quality of Food. Lund B, Baird-Parker TC, Gould GW (eds). Aspen Publisher, Gaitherburg, MD, USA (2000)
  105. Todd ECD. Foodborne disease in Canada - a 10-year summary from 1975 to 1984. J. Food Protect. 59: 82-92 (1992)
  106. Kramer JM, Gilbert RJ. Bacillus cereus and other Bacillus species. pp. 21-70. In: Foodborne Bacterial Pathogens. Doyle MP (ed). Marcel Dekker, New York, NY, USA (1989)
  107. Shinagawa K. Analytical methods for Bacillus cereus and other Bacillus species. Int. J. Food Microbiol. 10: 125-142 (1990) https://doi.org/10.1016/0168-1605(90)90061-9
  108. Duc Le H, Dong TC, Logan NA, Sutherland AD, Taylor J, Cutting SM. Cases of emesis associated with bacterial contamination of an infant breakfast cereal product. Int. J. Food Microbiol. 102: 245-251 (2005) https://doi.org/10.1016/j.ijfoodmicro.2004.11.022
  109. Earl AM, Losick R, Kolter R. Ecology and genomics of Bacillus subtilis. Trends Microbiol. 16: 269-275 (2008) https://doi.org/10.1016/j.tim.2008.03.004
  110. Tam NKM, Uyen NQ, Hong HA, Duc LH, Hoa TT, Serra CR, Henriques AO, Cutting SM. The intestinal life cycle of Bacillus subtilis and close relatives. J. Bacteriol. 188: 2692-2700 (2008) https://doi.org/10.1128/JB.188.7.2692-2700.2006
  111. Tatzel R, Ludwig W, Schleifer KH, Wallnofer PR. Identification of Bacillus strains isolated from milk and cream with classical and nucleic acid hybridisation methods. J. Dairy Res. 61: 539-535 (1994) https://doi.org/10.1017/S0022029900028454
  112. Mikkola R, Kolari M, Andersson MA, Helin J, Salkinoja-Salonen MS. Toxic lactonic lipopeptide from food poisoning isolates of Bacillus licheniformis. Eur. J. Biochem. 267: 4068-4074 (2000) https://doi.org/10.1046/j.1432-1033.2000.01467.x
  113. Obi SKC. Lechithinase and toxin production in Bacillus species. Zbl. Bakt. Mik. Hyg. I. A. 246: 415-422 (1980)
  114. Suominen I, Andersson MA, Andersson MC, Hallaksela AM, Kampfer P, Rainey FA, Salkinoja-Salonen M. Toxic Bacillus pumilus from indoor air, recycled paper pulp, Norway spruce, food poisoning outbreaks, and clinical samples. Syst. Appl. Microbiol. 24: 267-276 (2001) https://doi.org/10.1078/0723-2020-00025
  115. McIntyre L, Bernard K, Beniac D, Issac-Renton JL, Naseby DC. Identification of Bacillus cereus group species, associated with food poisoning outbreaks in British Columbia, Canada. Appl. Environ. Microb. 74: 7451-7453 (2008) https://doi.org/10.1128/AEM.01284-08
  116. Damgaard PH, Larsen HD, Hansen BM, Bresciani J, Jorgensen K. Enterotoxin-producing strains of Bacillus thuringiensis isolated from food. Lett. Appl. Microbiol. 23: 146-150 (1996) https://doi.org/10.1111/j.1472-765X.1996.tb00051.x
  117. Fletcher P, Logan NA. Improved cytotoxicity assay for Bacillus cereus diarrhoeal enterotoxin. Lett. Appl. Microbiol. 28: 393-400 (1999) https://doi.org/10.1046/j.1365-2672.1999.00542.x
  118. Rivera AMG, Granum PE, Priest FG. Common occurrence of enterotoxin genes and enterotoxicity in Bacillus thuringiensis. FEMS Microbiol. Lett. 190: 151-155 (2000) https://doi.org/10.1111/j.1574-6968.2000.tb09278.x
  119. Jackson SJ, Goodbrand RB, Ahmed R, Kasatiya S. Bacillus cereus and Bacillus thuringiensis isolated in a gastroenteritis outbreak investigation. Lett. Appl. Microbiol. 21: 103-105 (1995) https://doi.org/10.1111/j.1472-765X.1995.tb01017.x
  120. European Commission, Health and Consumer Protection Directorate-general, opinion of the scientific committee on animal nutrition on the safety of use of Bacillus species in animal nutrition. Available from: http://ec.europa.eu/food/fs/sc/scan/out41_en.pdf. Accessed Dec. 1, 2008.
  121. Granum PE. Bacillus cereus and food poisoning. pp. 37-46. In: Applications and Systematics of Bacillus and Relatives. Berkeley R, Heyndrickx M, Logan N, De Vos P (eds). Blackwell Science Ltd., London, UK (2002)
  122. Granum PE. Bacillus cereus. pp. 327-336. In: Food Microbiology:Fundamentals and Frontiers. Doyle M, Beuchat L, Montville T(eds). ASM Press, Washington, DC, USA (1997)
  123. Schoeni JL, Wong ACL. Bacillus cereus food poisoning and its toxins. J. Food Protect. 68: 636-648 (2005) https://doi.org/10.4315/0362-028X-68.3.636
  124. Granum PE, Brynestad S, O'Sullivan K, Nissen H. Enterotoxin from Bacillus cereus: Production and biochemical characterisation. Neth. Milk Dairy J. 47: 63-70 (1993)
  125. Beecher DJ, Wong ACL. Tripartite haemolysin BL: Isolation and characterization of two distinct homologous sets of components from a single Bacillus cereus isolate. Microbiology 146: 1371-1380 (2000) https://doi.org/10.1099/00221287-146-6-1371
  126. Jackson SG. Bacillus cereus. J. Assoc. Off. Anal. Chem. 74: 704-706 (1991)
  127. Jackson SG. Rapid screening test for enterotoxin-producing Bacillus cereus. J. Clin. Microbiol. 31: 972-974 (1993)
  128. Christiansson A. Enterotoxin production in milk by Bacillus cereus: A comparison of methods for toxin detection. Neth. Milk Dairy J. 47: 79-87 (1993)
  129. Fermanian C, Lapeyre C, Fremy JM, Claisse M. Production of diarrhoeal toxin by selected strains of Bacillus cereus. Int. J. Food Microbiol. 30: 345-358 (1996) https://doi.org/10.1016/0168-1605(96)00961-0
  130. Agata N, Mori M, Ohta M, Suwan S, Ohtani I, Isobe M. A novel dodecadepsipeptide, cereulide, isolated from Bacillus cereus causes vacuole formation in HEp-2 cells. FEMS Microbiol. Lett. 121: 31-34 (1994) https://doi.org/10.1111/j.1574-6968.1994.tb07071.x
  131. Mikami T, Horikawa T, Murakami T, Matsumoto T, Yamakawa A, Murayama S, Katagiri S, Shinagawa K, Suzuki M. An improved method for detecting cytostatic toxin (emetic toxin) of Bacillus cereus and its application to food samples. FEMS Microbiol. Lett. 119: 53-58 (1994) https://doi.org/10.1111/j.1574-6968.1994.tb06866.x
  132. Hughes S, Bartholomew B, Hardy JC, Kramer JM. Potential application of a HEp-2 cell assay in the investigation of Bacillus cereus emetic-syndrome food poisoning. FEMS Microbiol. Lett. 52: 7-12 (1988) https://doi.org/10.1111/j.1574-6968.1988.tb02563.x
  133. Andersson MA, Mikkola R, Helin J, Andersson MC, Salkinoja-Salonen M. A novel sensitive bioassay for detection of Bacillus cereus emetic toxin and related depsipeptide ionophores. Appl. Environ. Microb. 64: 1338-1343 (1998)
  134. Finlay WJJ, Logan NA, Sutherland AD. Semiautomated metabolic staining assay for Bacillus cereus emetic toxin. Appl. Environ. Microb. 65: 1811-1812 (1999)
  135. Ehling-Schulz M, Fricker M, Scherer S. Identification of emetic toxin producing Bacillus cereus strains by a novel molecular assay. FEMS Microbiol. Lett. 232: 189-195 (2004) https://doi.org/10.1016/S0378-1097(04)00066-7
  136. Toh M, Moffitt MC, Henrichsen L, Raftery M, Barrow K, Cox JM, Marquis CP, Neilan BA. Cereulide, the emetic toxin of Bacillus cereus, is putatively a product of nonribosomal peptide synthesis. J. Appl. Microbiol. 97: 992-1000 (2004) https://doi.org/10.1111/j.1365-2672.2004.02381.x
  137. Hoton FM, Andrup L, Swiecicka I, Mahillon J. The cereulide genetic determinants of emetic Bacillus cereus are plasmid-borne. Microbiology 151: 2121-2124 (2005) https://doi.org/10.1099/mic.0.28069-0
  138. Beattie SH, Williams AG. Detection of toxigenic strains of Bacillus cereus and other Bacillus spp. with an improved cytotoxicity assay. Lett. Appl. Microbiol. 28: 221-225 (1999) https://doi.org/10.1046/j.1365-2672.1999.00498.x
  139. Griffiths MW. Toxin production by psychrotrophic Bacillus spp. present in milk. J. Food Protect. 53: 790-792 (1990) https://doi.org/10.4315/0362-028X-53.9.790
  140. Rowan NJ, Deans K, Anderson JG, Gemmell CG, Hunter IS, Chaithong T. Putative virulence factor expression by clinical and food isolates of Bacillus spp. after growth in reconstituted infant milk formulae. Appl. Environ. Microb. 67: 3873-3881 (2001) https://doi.org/10.1128/AEM.67.9.3873-3881.2001
  141. From C, Pukall R, Schumann P, Hormazabal V, Granum PE. Toxin-producing ability among Bacillus spp. outside the Bacillus cereus group. Appl. Environ. Microb. 71: 1178-1183 (2005) https://doi.org/10.1128/AEM.71.3.1178-1183.2005
  142. Taylor JMW, Sutherland AD, Aidoo KE, Logan NA. Heat-stable toxin production by strains of Bacillus cereus, Bacillus firmus, Bacillus megaterium, Bacillus simplex, and Bacillus licheniformis. FEMS Microbiol. Lett. 242: 313-317 (2005) https://doi.org/10.1016/j.femsle.2004.11.022
  143. Peypoux F, Bonmatin JM, Wallach J. Recent trends in the biochemistry of surfactin. Appl. Microbiol. Biot. 51: 553-563 (1999) https://doi.org/10.1007/s002530051432
  144. Hoornstra D, Andersson MA, Mikkola R, Salkinoja-Salonen MS. A new method for in vitro detection of microbially produced mitochondrial toxin. Toxicol. In Vitro 17: 745-751 (2003) https://doi.org/10.1016/S0887-2333(03)00097-3
  145. Galvez A, Valdivia E, Gonzalez-Segura A, Lebbadi M, Martinez-Bueno M, Maqueda M. Purification, characterization, and lytic activity against Naegleria fowleri of two amoebicins produced by Bacillus licheniformis A12. Appl. Environ. Microb. 59: 1480-1486 (1993)
  146. Galvez A, Maqueda M, Cordovilla P, Martinez-Bueno M, Lebbadi M, Valdivia E. Characterization and biological activity against Naegleria fowleri of amoebicins produced by Bacillus licheniformis D-13. Antimicrob. Agents Ch. 38: 1314-1319 (1994) https://doi.org/10.1128/AAC.38.6.1314
  147. From C, Hormazabal V, Hardy SP, Granum PE. Cytotoxicity in Bacillus mojavensis is abolished following loss of surfactin synthesis: Implications for assessment of toxicity and food poisoning potential. Int. J. Food Microbiol. 117: 43-49 (2007) https://doi.org/10.1016/j.ijfoodmicro.2007.01.013
  148. Mikkola R, Andersson MA, Grigoriev P, Teplova V, Saris NEL, Rainey FA, Salkinoja-Salonen MS. Bacillus amyloliquefaciens strains isolated from moisture damaged buildings contained surfactin and a substance toxic to mammalian cells. Arch. Microbiol. 181: 314-323 (2004)
  149. Mikkola R, Andersson MA, Teplova V, Grigoriev P, Kuehn T, Loss S, Tsitko I, Apetroaie C, Saris NEL, Veijalainen P, Salkinoja-Salonen MS. Amylosin from Bacillus amyloliquefaciens, a K+ and Na+ channel forming toxic peptide containing a polyene structure. Toxicon 49: 1158-1171 (2007) https://doi.org/10.1016/j.toxicon.2007.02.010
  150. Matarante A, Baruzzi F, Cocconcelli PS, Morea M. Genotyping and toxigenic potential of Bacillus subtilis and Bacillus pumilus strains occurring in industrial and artisanal cured sausages. Appl. Environ. Microb. 70: 5168-5176 (2004) https://doi.org/10.1128/AEM.70.9.5168-5176.2004
  151. Ouoba LII, Thorsen L, Varnam AH. Enterotoxins and emetic toxins production by Bacillus cereus and other species of Bacillus isolated from Soumbala and Bikalga, African alkaline fermented food condiments. Int. J. Food Microbiol. 124: 224-230 (2008) https://doi.org/10.1016/j.ijfoodmicro.2008.03.026
  152. Thorsen L, Hansen BM, Nielsen KF, Hendriksen NB, Phipps RK, Budde BB. Characterization of emetic Bacillus weihenstephanensis, a new cereulide-producing bacterium. Appl. Environ. Microb. 72: 5118-5121 (2006) https://doi.org/10.1128/AEM.00170-06
  153. Lapidus A, Goltsman E, Auger S, Galleron N, Segurens B, Dossat C, Land ML, Broussolle V, Brillard J, Guinebretiere MH, Sanchis V, Nguen-the C, Lereclus D, Richardson P, Wincker P, Weissenbach J, Ehrlich SD, Sorokin A. Expending the Bacillus cereus group genomics to putative food-borne pathogens of different toxicity. Chem. -Biol. Interact. 171: 236-249 (2008) https://doi.org/10.1016/j.cbi.2007.03.003
  154. Haggblom MM, Apetroaie C, Andersson MA, Salkinoja-Salonen MS. Quantitative analysis of cereulide, the emetic toxin of Bacillus cereus, produced under various conditions. Appl. Environ. Microb. 68: 2479-2483 (2002) https://doi.org/10.1128/AEM.68.5.2479-2483.2002