Enhancement of Anti-tumorigenic Polysaccharide Production, Adhesion, and Branch Formation of Bifidobacterium bifidum BGN4 by Phytic Acid

  • Ku, Seock-Mo (Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University) ;
  • You, Hyun-Ju (Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University) ;
  • Ji, Geun-Eog (Department of Food and Nutrition, Research Institute of Human Ecology, Seoul National University)
  • Published : 2009.06.30

Abstract

The polysaccharide (BB-pol) extracted from Bifidobacterium bifidum BGN4 showed growth inhibitory effects on several colon cancer cell lines such as HT-29 and HCT-116. To increase the yield of polysaccharide, B. bifidum BGN4 was cultured in various culture media with different compositions. When B. bifidum BGN4 was cultured in modified MRS broth containing phytic acid, the cells showed increased branch formation and enlarged morphology. The content of total carbohydrate and the ability of adhesion to intestinal epithelial cells were also increased by phytic acid. The polysaccharide obtained from the cells grown in the presence of phytic acid inhibited the proliferation of cancer cell lines such as HT-29 and MCF-7 cells but not normal colon cell line, FHC. Taken together, Bifidobacterium grown in the presence of phytic acid may confer enhanced beneficial function for the host.

Keywords

References

  1. Fuller R. Probiotics in man and animal. J. Appl. Bacteriol. 66: 365-378 (1989) https://doi.org/10.1111/j.1365-2672.1989.tb05105.x
  2. O'Mahony L, Feeney M, O'Halloran S, Murphy L, Kiely B, Fitzgibbon J, Lee G, O'Sullivan G, Shanahan F, Collins JK. Probiotic impact on microbial flora, inflammation and tumor development in IL-10 knockout mice. Aliment. Pharm. Therap. 15: 1219-1225 (2001) https://doi.org/10.1046/j.1365-2036.2001.01027.x
  3. Gaudier E, Michel C, Segain JP, Cherbut C, Hoebler C. The VSL#3 probiotic mixture modifies microflora but does not heal chronic dextran sodium sulfate–induced colitis or reinforce the mucus barrier in mice. J. Nutr. 135: 2753-2761 (2005) https://doi.org/10.1093/jn/135.12.2753
  4. Parvez S, Malik KA, Kang SA, Kim HY. Probiotics and their fermented food products are beneficial for health. J. Appl. Microbiol. 100: 1171-1185 (2006) https://doi.org/10.1111/j.1365-2672.2006.02963.x
  5. Bernet MF, Brassart D, Neeser JR, Servin AL. Lactobacillus acidophilus LA1 binds to cultured human intestinal cell lines and inhibits cell-attachment and cell invasion by enterovirulent bacteria. Gut 35: 483-489 (1994) https://doi.org/10.1136/gut.35.4.483
  6. Hudault S, Lievin V, Bernet-Camard MF, Servin AL. Antagonistic activity exerted in vitro and in vivo by Lactobacillus casei (strain GG) against Salmonella typhimurium C5 infection. Appl. Environ. Microb. 63: 513-518 (1997)
  7. Salminen S, Bouley MC, Boutron-Rualt MC, Cummings J, Franck A, Gibson G, Isolauri E, Moreau MC, Roberfroid M, Rowland I. Functional food science and gastrointestinal physiology and function. Brit. J. Nutr. 1: S147-S171 (1998) https://doi.org/10.1079/BJN19980108
  8. de Vrese M, Schrezenmeir J. Probiotics, prebiotics, and synbiotics. Adv. Biochem. Eng. Biot. 111: 1-66 (2008) https://doi.org/10.1007/10_2008_097
  9. Ofek I, Doyle RJ. Bacterial Adhesion to Animal Cells and Tissues. Chapman & Hall, New York, NY, USA. pp. 158-177 (1994)
  10. Sekine K, Ohta J, Onishi M, Tatsuki T, Shimokawa Y, Toida T, Kawashima T Hashimoto Y. Analysis of antitumor properties of effector cells stimulated with a cell wall preparation (WPG) of Bifidobacterium infantis. Biol. Pharm. Bull. 18: 148-153 (1995) https://doi.org/10.1248/bpb.18.148
  11. Oda M, Hasegawa H, Komatsu S, Kambe M, Tsuchiya F. Antitumor polysaccharide from Lactobacillus sp. Agr. Biol. Chem. 47: 1623-1625 (1983) https://doi.org/10.1271/bbb1961.47.1623
  12. You HJ, Oh DK, Ji GE. Anticancerogenic effect of a novel chiroinositol-containing polysaccharide from Bifidobacterium bifidum BGN4. FEMS Microbiol. Lett. 240: 131-136 (2004) https://doi.org/10.1016/j.femsle.2004.09.020
  13. Kim JY, Suh JW, Ji GE. Evaluation of S-adenosyl-L-methionine (SAM) production by Bifidobacterium bifidum BGN4. Food Sci. Biotechnol. 17: 184-187 (2008)
  14. Kim JY, Seo HS, Seo JM, Suh JW, Hwang IK, Ji GE. Development of S-adenosyl-L-methionine (SAM) reinforced probiotic yogurt using Bifidobacterium bifidum BGN4. Food Sci. Biotechnol. 17: 1025-1031 (2008)
  15. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356 (1956) https://doi.org/10.1021/ac60111a017
  16. Perez PF, Minnaard Y, Disalvo EA, DeAntoni GL. Surface properties of bifidobacterial strains of human origin. Appl. Environ. Microb. 64: 21-26 (1989)
  17. Servin AL, Coconnier MH. Adhesion of probiotic strains to the intestinal mucosa and interaction with pathogens. Best Pract. Res. Cl. Ga. 17: 741-754 (2003) https://doi.org/10.1016/S1521-6918(03)00052-0
  18. Kim IH, Park MS, Ji GE. Characterization of adhesion of Bifidobacterium sp. BGN4 to human enterocyte-like Caco-2 cells. J. Microbiol. Biotechn. 13: 276-281 (2003)
  19. Wadstrom T, Andersson K, Sydow M, Axelsson L, Lindgren S, Gullmar B. Surface properties of lactobacilli isolated from the small intestine of pigs. J. Appl. Bacteriol. 62: 513-520 (1987) https://doi.org/10.1111/j.1365-2672.1987.tb02683.x
  20. Kojima M, Suda S, Hotta S, Hamada K. Induction of pleomorphism in Lactobacillus bifidus. J. Bacteriol. 95: 710-711 (1968)
  21. Kojima M, Suda S, Hotta S, Hamada K. Induction of pleomorphy and calcium ion deficiency in Lactobacillus bifidus. J. Bacteriol. 102: 217-220 (1970)
  22. Kojima M, Suda S, Hotta S, Hamada K. Suganuma A. Necessity of calcium ion for cell division in Lactobacillus bifidus. J. Bacteriol. 104: 1010-1013 (1970)