Optimization of Extraction Conditions and Comparison of Rosmarinic and Caffeic Acids from Leaves of Perilla frutescens Varieties

  • Lee, Jin-Hwan (Department of Functional Crop, National Institute of Crop Science, Rural Development Administration) ;
  • Baek, In-Youl (Department of Functional Crop, National Institute of Crop Science, Rural Development Administration) ;
  • Kang, Nam-Suk (Department of Functional Crop, National Institute of Crop Science, Rural Development Administration) ;
  • Jung, Chan-Sik (Department of Functional Crop, National Institute of Crop Science, Rural Development Administration) ;
  • Lee, Myoung-Hee (Department of Functional Crop, National Institute of Crop Science, Rural Development Administration) ;
  • Park, Keum-Yong (Department of Functional Crop, National Institute of Crop Science, Rural Development Administration) ;
  • Ha, Tae-Joung (Department of Functional Crop, National Institute of Crop Science, Rural Development Administration)
  • 발행 : 2009.06.30

초록

The objectives of this present study were to compare the contents and determine optimum extraction conditions for the rosmarinic acid (RA) and caffeic acid (CA) from leaves of Korean Perilla frutescens varieties. RA and CA from leaves of cv. Bora, a breeding line of P. frutescens were isolated and elucidated using various spectroscopic data. On the basis of 2 phenolic acids, optimum extraction conditions were obtained by employing 50% EtOH for 60 min at $25^{\circ}C$. We reported for the first time on the contents of RA and CA from leaves of 32 Korean varieties. Among them, leaves of P. frutescens Brit. var. acuta Kudo I exhibited the highest RA content ($8.53{\pm}0.57$ mg/g) and CA content ($2.33{\pm}0.11$ mg/g) showed the highest in the P. frutescens Brit. var. viridis Makino. Interestingly, average RA content ($2.66{\pm}0.17$ mg/g) showed a markedly higher than that of CA ($1.98{\pm}0.16$ mg/g) in Korean varieties. These results suggest that concentrations of the RA and CA in P. frutescens leaves could be a key factor in the selection process of a high quality species.

키워드

참고문헌

  1. He XG. On-line identification of phytochemical constituents in botanical extracts by combined high-performance liquid chromatographic-diode array detection-mass spectrometric techniques. J. Chromatogr. A 880: 203-232 (2000) https://doi.org/10.1016/S0021-9673(00)00059-5
  2. Person DA, Frankel EN, Aeschbach R, German JB. Inhibition of endothelial cell-mediated oxidation of low-density lipoprotein by rosemary and plant phenolics. J. Agr. Food Chem. 45: 578-582 (1997) https://doi.org/10.1021/jf9603893
  3. Teissedre PL, Frankel EN, Waterhouse AL, Peleg H, German JB. Inhibition of in vitro human LDL oxidation by phenolic antioxidants from grapes and wines. J. Sci. Food Agr. 70: 55-61 (1996) https://doi.org/10.1002/(SICI)1097-0010(199601)70:1<55::AID-JSFA471>3.0.CO;2-X
  4. Vinson JA, Jang J, Dabbagh YA, Serry M, Cai S. Plant polyphenols exhibit lipoprotein-bound antioxidant activity using an in vitro oxidation model for heart disease. J. Agr. Food Chem. 43: 2798-2799 (1995) https://doi.org/10.1021/jf00059a004
  5. Roussis IG, Lambropoulos I, Soulti K. Scavenging capacities of some wines and wine phenolic extracts. Food Technol. Biotech. 43: 351-358 (2005)
  6. Jacob RA, Burri BJ. Oxidative damage and defense. Am. J. Clin. Nutr. 63: 985S-990S (1996) https://doi.org/10.1093/ajcn/63.6.985
  7. Morton LW, Caccetta RAA, Puddey IB, Croft KD. Chemistry and biological effects of dietary phenolic compounds: Relevance to cardiovascular disease. Clin. Exp. Parmacol. P. 27: 152-159 (2000) https://doi.org/10.1046/j.1440-1681.2000.03214.x
  8. Henderson BE, Ross RK, Pike MC. Toward the primary prevention of cancer. Science 254: 1131-1138 (1991) https://doi.org/10.1126/science.1957166
  9. Renaud S, De Lorgeril M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 339: 1523-1526 (1992) https://doi.org/10.1016/0140-6736(92)91277-F
  10. Bito T, Roy S, Sen CK, Packer L. Pine bark extract pycnogenol downregulates IFN-$\gamma$-induced adhesion of T cells to human keratinocytes by inhibiting inducible ICAM-1 expression. Free Radical Bio. Med. 28: 219-227 (2000) https://doi.org/10.1016/S0891-5849(99)00229-4
  11. Robbins RJ. Phenolic acids in foods: An overview of analytical methodology. J. Agr. Food Chem. 51: 2866-2887 (2003) https://doi.org/10.1021/jf026182t
  12. Klampfl CW, Buchberge W, Haddad PR. Determination of organic acids in food samples by capillary zone electrophoresis. J. Chromatogr. A 880: 203-232 (2000) https://doi.org/10.1016/S0021-9673(00)00059-5
  13. Gabor J, Imre M, Vilmos MV, Gerald B. Comparative studies of the rosmarinic and caffeic acid contents of Lamiaceae species. Biochem. Syst. Ecol. 27: 733-738 (1999) https://doi.org/10.1016/S0305-1978(99)00007-1
  14. Kim TJ, Chang JS. The Resources Plants of Korea. Seoul National University Publising Co., Seoul, Korea. pp. 67-78 (1996)
  15. Lee CB. Illustrated Flora of Korea. Hyantgmoon Publishing Co., Seoul, Korea. pp. 659-678 (1989)
  16. Lee JH, Kang NS, Ha TJ, Ko JM, Han WY, Suh DY, Park KH, Baek IY. Antioxidant activities and determination of phenolic acids from leaves of Perilla frutescens. Agr. Chem. Biotech. 49: 11-15 (2006)
  17. Liu JH, Steigel A, Reininger E, Bauer R. Two new prenylated 3-benzoxepin derivatives as cyclooxygenase inhibitors from Perilla frutescens var. acuta. J. Nat. Prod. 63: 403-405 (2000) https://doi.org/10.1021/np990362o
  18. Nakamura Y, Ohto Y, Murakami A, Ohigashi H. Superoxide scavenging activity of rosmarinic acid from Perilla frutescens Britton var. acuta f. viridis. J. Agr. Food Chem. 46: 4545-4550 (1998) https://doi.org/10.1021/jf980557m
  19. Nakamura T, Ohsawa K. Metabolites of orally administered Perilla frutescens extracts in rats and humans. Biol. Pharm. Bull. 23: 122-127 (2000) https://doi.org/10.1248/bpb.23.122
  20. Ishikura N. Anthocyanins and flavones in leaves and seeds of Perilla plant. Agr. Biol. Chem. Tokyo 45: 1855-1860 (1981) https://doi.org/10.1271/bbb1961.45.1855
  21. Aritomi M, Kumori T, Kawasaki T. Cyanogenic glycosides in leaves of Perilla frutescens var. acuta. Phytochemistry 24: 2438-2439 (1985) https://doi.org/10.1016/S0031-9422(00)83060-5
  22. Peterson M, Simmonds MSJ. Rosmarinic acid. Phytochemistry 62: 121-125 (2003) https://doi.org/10.1016/S0031-9422(02)00513-7
  23. Sanbongi C, Takano H, Osakabe N, Sana N, Natsume M, Yanagisawa R, Inoue KI, Sadakane K, Ichinose T, Yoshikawa T. Rosmarinic acid in perilla extract inhibits allergic inflammation induced by mite allergen, in a mouse model. Clin. Exp. Allergy 34: 971-977 (2004) https://doi.org/10.1111/j.1365-2222.2004.01979.x
  24. Peake PW, Pussell BA, Martyn P, Timmermans V, Charlesworth JA. The inhibitory effect of rosmarinic acid on complement involves the C5 convertase. Int. J. Immunopharmaco. 13: 853-857 (1991) https://doi.org/10.1016/0192-0561(91)90036-7
  25. Yamamoto H, Sakakibara J, Nagatsu A, Sekiya K. Inhibitors of arachidonate lipoxygenase from defatted perilla seed. J. Agr. Food Chem. 46: 862-865 (1998) https://doi.org/10.1021/jf970520m
  26. Rimando AM, Inoshiri S, Otsuka H. Screening for mast cell histamine release inhibitory activity of Philippine medicinal plants. Active constituent of Ehretia microphylla. Shoyakugaku Zasshi 41: 242-247 (1987)
  27. Gulcin İ. Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid). Toxicology 217: 213-220 (2006) https://doi.org/10.1016/j.tox.2005.09.011
  28. Laranjinha J, Vieira O, Madeira V, Almeida L. Two related phenolic antioxidants with opposite effects on vitamin E content in low density lipoproteins oxidized by ferrylmyoglobin: Consumption vs. regeneration. Arch. Biochem. Biophys. 323: 373-381 (1995) https://doi.org/10.1006/abbi.1995.0057
  29. Fukumoto LR, Mazza G. Assessing antioxidant and prooxidant activities of phenolic compounds. J. Agr. Food Chem. 48: 3597-3604 (2000) https://doi.org/10.1021/jf000220w
  30. Kerry N, Rice-Evans C. Peroxinitrile oxidases catechols to Oquinones. FEBS Lett. 437: 167-171 (1998) https://doi.org/10.1016/S0014-5793(98)01223-X
  31. Bano MJD, Lorente J, Castillo J, García OB, Rio JAD, Ortuno A, Quirin KW, Gerard D. Phenolic diterpenes, flavones, and rosmarinic acid distribution during the development of leaves, flowers, stems, and roots of Rosmarinus officinalis. J. Agr. Food Chem. 51: 4247-4253 (2003) https://doi.org/10.1021/jf0300745
  32. Makino T, Ono T, Matsuyama K, Nogaki F, Miyawaki S, Honda G, Muso E. Suppressive effects of Perilla frutescens on IgA nephropathy in HIGA mice. Nephrol. Dial. Transpl. 18: 484-490 (2003) https://doi.org/10.1093/ndt/18.3.484
  33. Ryu JH, Son HJ, Lee SH, Sohn DH. Two neolignans from Perilla frutescens and their inhibition of nitric oxide synthase and tumor necrosis factor-$\alpha$ expression in murine macrophage cell line RAW 264.7. Bioorg. Med. Chem. Lett. 12: 649-651 (2002) https://doi.org/10.1016/S0960-894X(01)00812-5
  34. Kim JJ, Kim SH, Hahn SJ, Chung IM. Changing soybean isoflavone composition and concentrations under two different storage conditions over three years. Food Res. Int. 38: 435-444 (2005) https://doi.org/10.1016/j.foodres.2004.11.001
  35. Mattivi F, Guzzon R, Vrhovsek U, Stefanini M, Velasco R. Metabolite profiling of grape: Flavonols and anthocyanins. J. Agr. Food Chem. 54: 7692-7702 (2006) https://doi.org/10.1021/jf061538c