Water Chestnut (Trapa japonica Flerov.) Exerts Inhibitory Effect on Postprandial Glycemic Response in Rats and Free Radical Scavenging Activity in vitro

  • Kang, Ming-Jung (Biohealth Product Research Center, School of Food and Life Science, Institute for Food Sciences, Inje University) ;
  • Lee, Soo-Kyung (Biohealth Product Research Center, School of Food and Life Science, Institute for Food Sciences, Inje University) ;
  • Song, Ji-Hyun (Biohealth Product Research Center, School of Food and Life Science, Institute for Food Sciences, Inje University) ;
  • Kim, Mi-Eun (Biohealth Product Research Center, School of Food and Life Science, Institute for Food Sciences, Inje University) ;
  • Kim, Myo-Jeong (Biohealth Product Research Center, School of Food and Life Science, Institute for Food Sciences, Inje University) ;
  • Jang, Joung-Soon (College of Medicine, Chung-Ang University) ;
  • Lee, Jai-Hyun (Department of Genetic Engineering, Dong-A University) ;
  • Kim, Jung-In (Biohealth Product Research Center, School of Food and Life Science, Institute for Food Sciences, Inje University)
  • 발행 : 2009.06.30

초록

The ${\alpha}-glucosidase$ inhibitory and antioxidant effects of water chestnut (Trapa japonica Flerov.) were assessed to explore its possible use as an anti-diabetic agent. Methanol extracts of the fruit shell and meat of water chestnut were assayed for inhibitory activity against yeast ${\alpha}-glucosidase$ and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity. Effect of fruit shell extract on postprandial glucose response was assessed. Compared with fruit meat, shell extract showed stronger inhibition against ${\alpha}-glucosidase$ with an $IC_{50}$ of 273 ${\mu}g/mL$. Oral administration of fruit shell extract (500 mg/kg) significantly lowered the postprandial area under the glucose response curve to starch (1 g/kg) in streptozotocin (STZ)-induced diabetic rats (p<0.01). Compared with fruit meat, shell extract showed stronger scavenging activity against DPPH, with an $IC_{50}$ of 27.1 ${\mu}g/mL$. The results indicate that the fruit shell of water chestnut was effective in controlling postprandial hyperglycemia and exerted an antioxidant effect. Therefore, water chestnut may be useful in treating diabetes.

키워드

참고문헌

  1. Centers for Disease Control and Prevention. Diabetes Surveillance Report. US Department of Health and Human Services, Atlanta, GA, USA (1999)
  2. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in the diabetes control in insulin-dependent diabetes mellitus. New Engl. J. Med. 329: 977-986 (1993) https://doi.org/10.1056/NEJM199309303291401
  3. Stand E, Baumgartl HJ, Füchtenbusch M, Stemplinger J. Effect of acarbose on additional insulin therapy in type 2 diabetic patients with late failure of sulphonylurea therapy. Diabetes Obes. Metab. 1: 215-220 (1999) https://doi.org/10.1046/j.1463-1326.1999.00021.x
  4. Saito N, Sakai H, Sekihara H, Yajima Y. Effect of an $\alpha$-glucosidase inhibitor (voglibose), in combination with sulphonylureas, on glycaemic control in type 2 diabetes subjects. J. Int. Med. Res. 26: 219-232 (1998)
  5. Sels JP, Huijberts MS, Wolffenbuttel BH. Miglitol, a new alphaglucosidase inhibitor. Expert Opin. Pharmaco. 1: 149-156 (1999) https://doi.org/10.1517/14656566.1.1.149
  6. Maritim AC, Sanders RA, Watkins JB 3rd. Diabetes, oxidative stress, and antioxidants: A review. J. Biochem. Mol. Toxic. 17: 24-38 (2003) https://doi.org/10.1002/jbt.10058
  7. Kaneto H, Nakatani Y, Kawamori D, Miyatsuka T, Matsuoka TA, Matsuhisa M, Yamasaki Y. Role of oxidative stress, endoplasmic reticulum stress, and c-Jun N-terminal kinase in pancreatic $\beta$-cell dysfunction and insulin resistance. Int. J. Biochem. Cell B 37: 1595-1608 (2005) https://doi.org/10.1016/j.biocel.2005.04.003
  8. Sinclair AJ, Girling AJ, Gray L, Lunec J, Barnett AH. An investigation of the relationship between free radical activity and vitamin C metabolism in elderly diabetic subjects with retinopathy. Gerontology 38: 268-274 (1992) https://doi.org/10.1159/000213339
  9. Lean ME, Noroozi M, Kelly I, Burns J, Talwar D, Sattar N, Crozier A. Dietary flavonols protect diabetic human lymphocytes against oxidative damage to DNA. Diabetes 48: 176-181 (1999) https://doi.org/10.2337/diabetes.48.1.176
  10. Hanefeld M. The role of acarbose in the treatment of non-insulindependent diabetes mellitus. J. Diabetes Complicat. 12: 228-237 (1998) https://doi.org/10.1016/S1056-8727(97)00123-2
  11. Gonzalez A, Zarauelo A, Gamez MJ, Utrilla MP, Jimenez J, Osuna I. Hypoglycemic activity of olive leaf. Planta Med. 58: 513-515 (1992) https://doi.org/10.1055/s-2006-961538
  12. AI-Azzawie HF, Alhamdani MS. Hypoglycemic and antioxidant effect of oleuropein in alloxan-diabetic rabbits. Life Sci. 78: 1371-1371 (2006) https://doi.org/10.1016/j.lfs.2005.07.029
  13. Park SA, Choi MS, Kim MJ, Jung UJ, Kim HJ, Park KK, Noh HJ, Park HM, Park YB, Lee JS, Lee MK. Hypoglycemic and hypolipidemic action of du-zhong (Eucommia ulmoides Oliver) leaves water extract in C57BL/KsJ-db/db mice. J. Ethnopharmacol. 107: 412-417 (2006) https://doi.org/10.1016/j.jep.2006.03.034
  14. Park SA, Choi MS, Jung UJ, Kim MJ, Kim DJ, Park HM, Park YB, Lee MK. Eucommia ulmoides oliver Leaf extract increases endogenous antioxidant activity in type 2 diabetic mice. J. Med. Food 9: 474-479 (2006) https://doi.org/10.1089/jmf.2006.9.474
  15. Lee WS, Baek YI, Kim JR, Cho KH, Sok DE, Jeong TS. Antioxidant activities of a new lignan and a neolignan from Saururus chinensis. Bioorg. Med. Chem. Lett. 14: 5623-5628 (2004) https://doi.org/10.1016/j.bmcl.2004.08.054
  16. Joo HJ, Kang MJ, Seo TJ, Kim HA, Yoo SJ, Lee SK, Lim HJ, Byun BH, Kim JI. The hypoglycemic effect of S. chinensis Baill in animal models of diabetes mellitus. Food Sci. Biotechnol. 15: 413-417 (2006)
  17. Ly TN, Hazama C, Shimoyamada M, Ando H, Kato K, Yamauchi R. Antioxidative compounds from the outer scales of onion. J. Agr. Food Chem. 53: 8183-8189 (2005) https://doi.org/10.1021/jf051264d
  18. Lee SK, Hwang JY, Kang MJ, Kim YM, Jung SH, Lee JH, Kim JI. Hypoglycemic effect of onion-skin extract in animal models of diabetes mellitus. Food Sci. Biotechnol. 17: 130-134 (2008)
  19. Suriyagoda LDB, Arima S, Suzuki A. Canopy and fruit characters with morphological relationships of European and Asian water chestnuts (Trapa spp.). Bull. Fac. Agr. Saga Univ. 92: 45-51 (2006)
  20. Tulyathan V, Boondee K, Mahawanich T. Characteristics of starch from water chestnut (Trapa bispinosa Roxb). J. Food Biochem. 29: 337-348 (2005) https://doi.org/10.1111/j.1745-4514.2005.00010.x
  21. Cung YH, Choi HK, Suh KH, Shin H. Numerical taxonomic study of the nut of genus Trapa in Korea. Korean J. Plant Tax. 17: 45-54 (1987) https://doi.org/10.11110/kjpt.1987.17.1.045
  22. Nokata G, Matsumoto Y, Nishioka I. Tapain, a new hydrolysable tannin from Trapa japonica Flerov. Chem. Pharm. Bull. 29: 1184-1187 (1981) https://doi.org/10.1248/cpb.29.1184
  23. Okuda T. Systematics and health effects of chemically distinct tannins in medicinal plants. Phytochemistry 66: 2012-2031 (2005) https://doi.org/10.1016/j.phytochem.2005.04.023
  24. Watanabe J, Kawabata J, Kurihara H, Niki R. Isolation and identification of $\alpha$-glucosidase inhibitors from Tochu-cha (Eucommia ulmoides). Biosci. Biotech. Bioch. 61: 177-178 (1997) https://doi.org/10.1271/bbb.61.177
  25. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200 (1958) https://doi.org/10.1038/1811199a0
  26. Mooradian AD, Thurman JE. Drug therapy of postprandial hyperglycemia. Drugs 57: 19-29 (1999) https://doi.org/10.2165/00003495-199957010-00003
  27. Fujita H, Yamagami T, Ohshima K. Long-term ingestion of a fermented soybean-derived Touchi-extract with alpha-glucosidase inhibitory activity is safe and effective in humans with borderline and mild type-2 diabetes. J. Nutr. 131: 2105-2108 (2001) https://doi.org/10.1093/jn/131.8.2105
  28. Youn JY, Park HY, Cho KH. Anti-hyperglycemic activity of Commelina communis L.: Inhibition of $\alpha$-glucosidase. Diabetes Res. Clin. Pr. 66: S149-S155 (2004) https://doi.org/10.1016/j.diabres.2003.08.015
  29. Korea Food & Drug Administration. Functional Food. Available from: http:// hfoodi.kfda.go.kr. Accessed Nov. 1, 2008
  30. Inoue I, Takahashi K, Noji S, Awata T, Negishi K, Katayama S. Acarbose controls postprandial hyper-proinsulinemia in non-insulindependent diabetes mellitus. Diabetes Res. Clin. Pr. 36: 143-151 (1997) https://doi.org/10.1016/S0168-8227(97)00045-4
  31. Soonthornpun S, Rattarasarn C, Leelawattana R, Setasuban W. Postprandial plasma glucose: A good index of glycemic control in type 2 diabetic patients having near-normal fasting glucose levels. Diabetes Res. Clin. Pr. 46: 23-27 (1999) https://doi.org/10.1016/S0168-8227(99)00061-3
  32. Campbell RK, White JR, Nomura D. The clinical importance of postprandial hyperglycemia. Diabetes Educator 27: 624-637 (2001) https://doi.org/10.1177/014572170102700504
  33. Baron AD. Postprandial hyperglycaemia and $\alpha$-glucosidase inhibitors. Diabetes Res. Clin. Pr. 40: S51-S55 (1998) https://doi.org/10.1016/S0168-8227(98)00043-6
  34. Bastyr EJ, Stuart CA, Brodows RG, Schwartz S, Graf CJ, Zagar A, Robertson KE (IOEZ Study Group). Therapy focused on lowering postprandial glucose, not fasting glucose, may be superior for lowering HbA1c. Diabetes Care 23: 1236-1241 (2000) https://doi.org/10.2337/diacare.23.9.1236
  35. Wiernsperger NF. Oxidative stress as a therapeutic target in diabetes: Revisiting the controversy. Diabetes Metab. 29: 579-585 (2003) https://doi.org/10.1016/S1262-3636(07)70072-1
  36. Jachea W, Tomasik A, Tarnawski R, Chwaliñska E. Evidence of oxidative stress in the renal cortex of diabetic rats: Favourable effect of vitamin E. Scand. J. Clin. Lab. Inv. 62: 81-88 (2002) https://doi.org/10.1080/003655102753517244
  37. Kowluru RA, Chan P-S. Oxidative stress and diabetic retinopathy. Exp. Diabetes Res. 2007: 43603-43614 (2007) https://doi.org/10.1155/2007/43603