
- 39 -

A Fast SIFT Implementation Based on

Integer Gaussian and Reconfigurable

Processor

Le Tran Su* and Jong Soo Lee*　

ATRACT

Scale Invariant Feature Transform (SIFT) is an effective algorithm in object

recognition, panorama stitching, and image matching, however, due to its complexity,

real‐time processing is difficult to achieve with software approaches. This paper

proposes using a reconfigurable hardware processor with integer half‐kernel. The

integer half‐kernel Gaussian reduces the Gaussian pyramid complexity in about half

[] and the reconfigurable processor carries out a parallel implementation of a full‐

search Fast‐SIFT algorithm. We use a low memory, fine grain single instruction

stream multiple data stream (SIMD) pixel processor that is currently being developed.

This implementation fully exposes the available parallelism of the SIFT algorithm

process and exploits the processing and I/O capabilities of the processor which

results in a system that can perform real‐time image and video compression. We

apply this novel implementation to images and measure the effectiveness.

Experimental simulation results indicate that the proposed implementation is capable

of real‐time applications.

Key Word

SIFT, Gaussian Filter, Reconfigurable Processor, SIMD, DOG

1. Introduction

Nowadays, image matching is used

to solve the many problems in

computer vision, including object or

scene recognition, 3D structure from

multiple images, stereo correspondence,

and motion tracking. In recent years,

an approach has been proposed to

generate a set of salient image

features. This approach has been

named the Scale Invariant Feature

Transform (SIFT); it transforms

image data into scale‐invariant

coordinates relative to local features.

The SIFT algorithm is a complex

* School of Computer Engineering & Information Technology, University of Ulsan(jsoolee@mail.ulsan.ac.kr)

#논문번호 : KIIECT2009-03-12 #접수일자 : 2009.08.24 #최종논문접수일자 : 2009.09.11

40 한국정보전자통신기술학회논문지 제2권 제3호

algorithm. To apply SIFT in

multimedia applications, it is necessary

to find a scheme to implement the

algorithm in real‐time. In the SIFT

algorithm, the Gaussian convolution is

used in the first step to determine key

‐points. When we use a Gaussian

filter mask of real coefficients; it may

take a longer to obtain for

calculations. To improve the

performance of the SIFT algorithm a

new approach has been proposed

named Fast‐SIFT algorithm based on

Integer Gaussian [2].

In our approach the SSE instructions

are used to improve the performance

of Gaussian filter calculations, with a

new method to calculate the Gaussian

convolution; this method is called

Block Filtering. By using Block

Filtering, we showed that the

Gaussian filter calculations can be

processed more quickly about two

times than another implementation [2].

We use a parallel approach to

implement the Fast‐SIFT algorithm

based on Integer Gaussian. We use a

single instruction stream multiple data

stream pixel processor exploiting the

benefits of integrating optoelectronic

devices into a high performance digital

processing system. By using the

SIMD pixel processor system, we can

expose fully the available parallelism

calculation of the SIFT algorithm.

Our paper is organized as follow:

Section 2 we describe briefly the Fast

‐SIFT algorithm based on Integer

Gaussian. Section 3 discusses the

SIMD pixel processor system, low

memory SIMD architecture. Section 4

describes in detail how the Fast‐

SIFT algorithm based on Integer

Gaussian has been adapted to fully

exploit the unique capability of the

SIMD processor system. Strong

proposals for the performance of the

system and experimental results are

also shown in section 4. Section 5

concludes this paper with presentation

of simulation results

II. Fast Scale Invariant Feature
Transform algorithm based on

integer Gaussian

The SIFT algorithm combines a scale

invariant region detector and a

descriptor based on the gradient

distribution in the detected regions.

The descriptor is presented by a 3D

histogram of gradient locations and

orientations. Those descriptors (local

features) are very distinctive and

invariant for image scaling or rotation.

The SIFT algorithm consists of 4

main filtering stages [1]:

A Fast SIFT Implementation Based on Integer Gaussian and Reconfigurable Processor 41

1. Scale‐space extreme detection:

The first stage of computation

searches all scales and image

locations.

2. Keypoint localization: At each

candidate location, a detailed model is

modelled to determine location and

scale.

3. Orientation assignment: One or

more orientations are assigned to each

keypoint location based on local image

gradient directions.

4. Keypoint descriptor: The local

image gradients are measured at the

selected scale in the neighbourhood of

each keypoint.

We applied the SIFT binaries

provided by Lowe for various image

and measured the performance. The

obtained results shown that most of

calculations are implemented in first

state: Scale‐space extreme detection.

Therefore, to improve the performance

of the SIFT algorithm implementation

we concentrate to improve the

performance of scale‐space extreme

detection stage.

Table 1. The distribution of

computation time for each stage in the

SIFT algorithm

SIFT’s stage

Execution time

800 x 600
pixel

640 x 480
pixel

DoG detector 2.126 (s) 1.905 (s)
Orientation
assignment

1.105 (s) 0.928 (s)

SIFT
descriptor

1.047 (s) 0.839 (s)

SIFT’s stage
Execution time

256 x 256
pixel

128 x 128
pixel

DoG detector 0.392 (s) 0.204 (s)
Orientation
assignment

0.211 (s) 0.142 (s)

SIFT
descriptor

0.206 (s) 0.105 (s)

Scale‐space extrema detection stage

of the filtering attempts to equate

different view points which are

projections of a specific 3D object

point. They are then examined in

further detail. Identification of

candidate locations can be efficiently

achieved using the continuous "scale

space" function which is based on the

Gaussian function. The scale space is

defined by the function:

(1)

SIFT is one such technique which

locates scale‐space extrema from

Gaussian image differences D(x,y,σ)

42 한국정보전자통신기술학회논문지 제2권 제3호

given by:

(2)

Where

* ‐ is the convolution operator,

G(x, y, σ) ‐ is a variable‐scale

Gaussian kernel,

I(x, y) ‐ is the input image.

k ‐ is used to up and down scale

To detect the local maxima or

minima of D(x, y, σ) each point is

compared with its 8 neighbours on the

same scale, and its 9 neighbours on

the up and down scale. If this value

is larger than all 26 neighbours it is a

maximum, if less a minimum.

In the Fast‐SIFT algorithm we

propose a new method to implement

the Gaussian convolution in scale‐

space extreme stage. In our method

we use a block of 4x4 to implement

the Gaussian filter. This block is

shown in Figure 1.

For example we have 4x4 pixels.

This is a 4x4 block. We use a half

kernel; in this case, it is an array

with 4 elements. And then we put the

half kernel to the block.

In figure 1 we explain the “half

kernel” definition. We divide the

Gaussian Kernel into 4 blocks.

Fig 1. The illustration of half kernel

These blocks will be applied to four

directions (Left, Right, Top, and

Bottom).

Fig 2. A 4x4 block filtering

In our new method to implement

Gaussian filter, we use a 4x4 block.

This implementation includes the four

steps below.

1. Load 4x4 pixels in 4 XMM

registers.

2. Load 4 kernel values in a XMM

register.

A Fast SIFT Implementation Based on Integer Gaussian and Reconfigurable Processor 43

3. Compute convolution (Left, Right,

Top, and Bottom)

Left, Right: reverse multiplication

Top: Matrix transpose

Bottom: Matrix transposes then

reverse multiplication

By repeating all image data we will

have the output image.

III. Related works

SIFT is perhaps the most popular

invariant local feature detector at

present, and has been applied

successfully in many occasions, such

as object recognition, image match

and registration, SFM & 3D

reconstruction, vSLAM, image

panorama, etc.

Nevertheless the complexity of the

SIFT algorithm results in very high

time consumption. But the high

popularity of SIFT, it is no surprise

that several variants and extensions of

SIFT have been proposed. For

example Ke and Sukthankar proposed

the so called PCA‐SIFT [5] that

apply Principal Components Analysis

(PCA) to the normalized gradient

patch. The Gradient location and

orientation histogram (GLOH) [6]

changes SIFTs location grid and uses

PCA to reduce the size of SIFT. The

primary focus of these extensions is

to gain improved performance.

An approach named Harris – SIFT

[7], by removing many indistinctive

candidates before generating

descriptors, Harris – SIFT saves a

lot of computations. Harris – SIFT

reduces both the feature number and

database size, or in other words, cuts

down the feature matching time. But

provided results of Harris – SIFT

method are not fast enough to

implement in real time.

In the fast approximated SIFT [8],

they proposed a modified SIFT

method for recognition purpose. They

speed up the SIFT computation by

using approximations (mainly

employing integral images) both the

DoG detector (section II.1) and the

SIFT descriptor (section II.4). Their

method can reduce the SIFT

computation time by a factor of eight

compared to the binaries SIFT

provided by Lowe. However, the loss

in matching performance is a major

drawback of this approach.

IV. SIMD Processor Array
Architecture

A reconfigurable processor is a

microprocessor with erasable hardware

44 한국정보전자통신기술학회논문지 제2권 제3호

that can rewire itself dynamically.

This allows the chip to adapt

effectively to the programming tasks

demanded by the particular software

they are interfacing with at any given

time. Ideally, the reconfigurable

processor can transform itself from a

video chip to a central processing unit

(CPU) to a graphics chip, for

example, all optimized to allow

applications to run at the highest

possible speed. In this paper we apply

the SIFT algorithm in SIMD

Processor.

The SIMD Pixel Processor system

[4] exploits the benefits from

integrating optoelectronic devices into

a high performance digital processing

system. In this system, an array of

thin‐film detectors is integrated on

top of and electrically interfaced to

digital SIMD processing elements. The

general architecture of a SIMD system

is depicted in Figure 3. The program

is stored in the array control unit

(ACU), and each instruction is

broadcasted to every node of the

system in a lockstep fashion (i.e., via

a single instruction stream). Each

node, in turn, executes the received

instructions on its local data (multiple

data stream), while exchanging data

with other nodes through the

interconnection network. Each SIMD

processor node is interconnected to its

four neighbours through a mesh

network closed as a torus. In this

way the opposite rows (or columns)

of the mesh are connected to each

other, enabling more powerful

communication schemes than those

available with a standard NEWS

(North‐East‐West‐South) network.

The micro architecture of a SIMD

processing element (PE) is shown in

Figure 4, along with the

interconnection network. The 16‐bit

data path includes an adder/subtractor,

barrel shifter, and multiply‐

accumulator (MACC) unit. Each PE

also includes 64 words of local

memory.

In addition, each SIMD processor

node interfaces to a small array of

thin film detectors, which is a subset

of the focal plane array. The

instruction set architecture allows a

single node to address up to 16 x 16

arrays of detectors. Each processor

incorporates eight‐bit sigma‐delta

analog to digital converters to convert

light intensities, incident on the

detectors, into digital values. The

SAMPLE instruction simultaneously

samples all detectors values and

makes them available for further

processing. The SIMD execution

model allows the entire image

projected on many nodes to be

sampled in a single cycle.

A Fast SIFT Implementation Based on Integer Gaussian and Reconfigurable Processor 45

This monolithic integration is the key

– feature of the SIMD Pixel

Processor system, providing an

extremely compact, high frame rate,

focal – plane processing.

P0

MEM 0

P1

MEM 1

Pn

MEM n

P0

MEM 0

P1

MEM 1

Pn

MEM n

ACU

INTERCONNECTION NETWORK

INSTRUCTION STREAM

Fig 1. Organization of a SIMD

parallel architecture

 Neighboring PEs

Comm. Unit

Register File
16 by 32 bit

2 read, 1 write

CFA

S&H
and
ADC

SP.Registers&I/O

Arithmetic,
Logical, and Shift

Unit

MACC

MMX

Local memory

Sleep

Decoder

Single Processing Element

Fig 2. A block diagram of a SIMD

processor array

V. Implement Fast‐SIFT in SIMD
parallel architecture

To carry out the Fast‐SIFT

algorithm, we consider all pixels of

the images. By using the specified

SIMD array, we distribute all pixels

into all PEs in which every PE owns

16 pixels. Assume n is the total

number of pixels. As a result, the

number of PEs involved in the

computation is n/16. By dividing the

pixels among n/16 processors, every

PE caries out the computation only on

the local memory containing 16 owned

pixels along with their membership

values as well as center values. Then,

the Fast‐SIFT algorithm is

implemented on n/16 processors in

which some new equations are

required for every PE. This enhances

the performance of Fast‐SIFT

algorithm implementation.

The first stage of Fast‐SiFT

algorithm includes two steps: DOG

(difference of Gaussian) space

construction and extrema detection.

Figure 5 shows the process of

building DOG space. The input image

will be resized to build scale space. In

each scale space, we apply new

approach to implement Gaussian filter

for images. After subtraction of

blurred images we get DOG space.

Figure 6 describes DOG space and

how to detect the extrema. To detect

the local maxima or minima, each

point is compared with its 8

neighbours on the same scale, and its

9 neighbours on the up and down

scale. If this value is larger than all

46 한국정보전자통신기술학회논문지 제2권 제3호

26 neighbours it is a maxima, if less

a minima. Figure 7 shows the

flowchart of keypoints detection.

Fig 5. DoG space construction

SIMD processor architecture provides

a suitable way to implement the DOG

space construction. Two levels of

parallelism are exploited in this

implementation. One is image scaling

process. Second is applying Gaussian

filter. We will describe in more detail

these steps in the next section.

Fig 6. DoG space scale

1. Image scaling

The purpose of this step is

constructing scale space. The original

image will be resized by a constant k.

In my implementation k = 0.5.

The image scaling process is

described in Figure 6. In this step,

first we shrink the image to the left.

Each pair of adjacent pixels will be

replaced by a new one. The value of

new pixel is the mean value of these

pixels. After shrinking the image to

the left, we implement shrinking

image to the bottom. In this way, we

get the resized image.

…

scal
e

(firs
t

octa
ve)

scale
(next
octav

e)

A Fast SIFT Implementation Based on Integer Gaussian and Reconfigurable Processor 47

(I0) is Original image (with the size MxN)

(I1) is resized image by k>1
(M1xN1)

Scale 1= I1 (second step)
For i=2; i<= number of scale; i++

 Calculate Scale i image (resized image)
 Smooth image with s1
End (Scale {i} calculated)

For i=1; i<= number of scale; i++
 A{1}=Smooth of scale{i} with

s2
 For j=2; j<=K; j++

 A{j}=Smooth of
A{j‐1} with s2;

 Sc{i}D{j‐1} =
A{j‐1} ‐ A{j}; (DOG calculated)

End
end

For i=2; i<= number of scale‐1; i++
 Find the local extrema on DOG

{i}
If (x,y)i is the local extrema of

DOG{i}
Transform (x,y)i to (x,y)i‐1

coordinate and ensure that

() ()
1

,,
+> i

yxofneighbor
i

yx DOGDOG
 Similar to coordinate

(x,y)i+1
End

Transform the all positions of
coordinate i

{(x,y)i , i=2,3,…,L‐1} to the
coordinate of original image.

Fig 7. Flowchart of keypoint

detection algorithm

Left

Bottom

Figure 8: Image scaling process

(a) (b) (c)

Fig 9. Scale space images

(a) 1st octave (b)2nd octave (c)3rd octave

2. Gaussian filter

As we described in section II, in our

method we use a block filtering

technique to implement Gaussian filter.

Original image Blurred image

Fig 10. Difference of Gaussian image

48 한국정보전자통신기술학회논문지 제2권 제3호

VI. Performance Evaluation

To evaluate the performance of the

proposed algorithm, we use a cycle

accurate SIMD simulator. We

developed the parallel Fast‐SIFT

algorithm in their respective assembly

languages for the SIMD processor

array. In this study, the image size of

256 × 256 pixels is used. For a fixed

256 × 256 pixel system, because each

PE contains 4x4 pixels so the number

of 4,096 PEs is used.

We summarize the parameters of the

system configuration in table 2.

The metrics of execution time and

sustained throughput of each case

form the basis of the study

comparison, defined in (8) and (9)

Execution time

(8)

Sustained throughput

(9)

Where C is the cycle count, fk is the

clock frequency, Oexec is the number

of executed operations, U is the

system utilization, and NPE is the

number of processing elements.

Table 2. system parameters

Parameters Value
Number of PEs 4,096

Pixels/PE 16
Memory/PE [word] 256 [32bit word]
VLSI technology 100 nm
Clock frequency 150 MHz
Interconnection

network
Torus

intALU/intMLU/Barrel
Shifter/intMACC/Comm 1/1/1/1/1

(a) (b) (c)

Fig 11. Features detected by SIFT

algorithm with the changing number of

scales.

Figure (11.a): number of octave is 2,

(11.b) and (11.c) are 3 and 4

respectively.

Figure 11 presents the detected SIFT

features with Lena image. As the

number of scale is higher the detected

SIFT features is more exactly.

Table 3 summarizes the execution

parameters for each image in the 4,096

PE system. Scalar instructions control

the processor array. Vector instructions,

performed on the processor array,

execute the algorithm in parallel.

System Utilization is calculated as the

average number of active processing

elements. The algorithm operates with

A Fast SIFT Implementation Based on Integer Gaussian and Reconfigurable Processor 49

System Utilization of 54% in average,

resulting in high sustained throughput.

Overall, our parallel implementation

supports sufficient performance of real

time (30 frame/sec or 33 ms) and

provides efficient processing for the

SIFT algorithm.

Table 4 shows the distribution of

vector instructions for the parallel

algorithm. Each bar divides the

instructions into the arithmetic‐logic

‐unit (ALU), memory (MEM),

communication (COMM), PE activity

control unit (MASK), and image

loading (PIXEL). The ALU and MEM

instructions are computation cycles

while COMM and MASK instructions

are necessary for data distribution and

synchronization of the SIMD processor

array. Results indicate that the

proposed algorithm is dominated by

ALU, MEM and MASK operations.

Table 5 shows the comparison

between our parallel implementation

with the SIFT binaries implementation

and the SIFT implementation based on

OpenCV . The results indicate that our

method can reduce the performance by

around 390 times to SIFT binaries

method and 230 times to OpenCV‐

based implementation. These results

demonstrate that the proposed parallel

approach supports fast performance

and also provide reliable and efficient

processing for SIFT implementation

Table 3. Algorithm performance on a

4,096 PE system running at 150MHz.

Image V e c
t o r
Inst
ruct
ion

Scal
a r
Inst
ruct
ion

S y
s t e
m
Util
izat
ion
[%]

T
o t
a l
C
y
c l
es

T
e
x
e
c
[
m
s
]

Sust
a i n e
d
Thro
ughp
ut
[Gop
s/sec
]

I
m
a
g
e
1

o c
t a
v e
=2

61,1
63

18,7
98

5 2 .
3

7
9 ,
9
1
6

0
.
5
3

247

o c
t a
v e
=3

89,2
39

28,1
96

5 4 .
6

1
1
7 ,
4
3
5

0
.
7
8

255

o c
t a
v e
=4

115,
503

37,5
93

5 5 .
2

1
5
3 ,
0
9
6

1
.
0
2

256

I
m
a
g
e
2

o c
t a
v e
=2

67,5
89

18,8
04

5 2 .
8

8
6 ,
3
9
3

0
.
5
8

252

o c
t a
v e
=3

90,4
73

28,5
38

5 4 .
9

1
1
9 ,
0
1
1

0
.
7
9

257

o c
t a
v e
=4

116,
169

37,7
25

5 5 .
9

1
5
3 ,
8
9
4

1
.
0
3

258

I
m
a
g
e
3

o c
t a
v e
=2

67,9
93

18,8
67

5 2 .
8

8
6 ,
8
6
0

0
.
5
8

253

o c
t a
v e
=3

90,0
81

28,9
14

5 5 .
1

1
1
9 ,
7
1
5

0
.
8
0

254

o c
t a
v e
=4

116,
437

37,8
85

5 6 .
3

1
5
4 ,
3
2
2

1
.
0
3

261

50 한국정보전자통신기술학회논문지 제2권 제3호

Table 4. The distribution of vector

instructions for the algorithm

In
str
uc
tio
n

Di
str
ib
uti
on

Image 1 Image 2 Image 3
oc
ta
ve
=
2

oc
ta
ve
=
3

oc
ta
ve
=
4

oc
ta
ve
=
2

oc
ta
ve
=
3

oc
ta
ve
=
4

oc
ta
ve
=
2

oc
ta
ve
=
3

oc
ta
ve
=
4

A
L
U

5
2.
7
9
4
9
9

5
5.
2
9
3
1

5
5.
9
1
2
8
3

5
7.
1
8
5
3
4

5
5.
6
7
0
7
5

5
6.
1
6
5
5
9

5
7.
4
3
9
7
4

5
5.
8
3
0
8
8

5
6.
2
6
6
4
8

M
E
M

2
2.
1
3
7
5
7

1
8.
9
3
6
7
8

1
7.
5
3
9
8
0

2
0.
1
3
0
4
9

1
8.
8
9
9
5
6

1
7.
4
3
9
2
5

2
0.
0
1
0
8
8

1
8.
8
3
1
2
9

1
7.
3
9
9
1
1

C
O
M
M

7.
2
2
0
0
5

7.
4
2
2
7
6

7.
6
4
6
5
5

6.
5
3
3
6
1

7.
3
2
1
5
2

7.
6
0
2
7
2

6.
4
9
4
7
9

7.
2
9
5
0
7

7.
5
8
5
2
2

M
A
S
K

1
7.
7
4
9
2
9

1
8.
2
4
7
6
2

1
8.
7
9
7
7
8

1
6.
0
6
1
7
9

1
7.
0
0
9
7
9

1
8.
6
9
0
0
1

1
5.
9
6
6
3
5

1
7.
9
4
4
7
4

1
8.
6
4
6
9
9

PI
X
E
L

0.
0
9
8
1
0

0.
0
9
9
7
4

0.
1
0
3
0
4

0.
0
8
8
7
7

0.
0
9
8
3
7

0.
1
0
2
4
4

0.
0
8
8
2
4

0.
0
9
8
0
2

0.
1
0
2
2
0

Table 5: Compare the performance with

the implementation of original SIFT

Image
Time execution

SIFT
binari

es
[ms]

OpenC
V

Imple
mentati

on
[ms]

Our
metho

d
[ms]

Ima
ge 1

Oct
ave
=
2

343 217 0.53

Oct
ave
=
3

367 227 0.78

Oct
ave
=
4

393 234 1.02

Ima
ge 2

Oct
ave
=
2

350 220 0.58

Oct
ave
=
3

378 231 0.79

Oct
ave
=
4

401 245 1.03

Ima
ge 3

Oct
ave
=
2

351 225 0.58

Oct
ave
=
3

379 239 0.80

Oct
ave
=
4

394 251 1.03

A Fast SIFT Implementation Based on Integer Gaussian and Reconfigurable Processor 51

VII. Conclusion

In this paper, a parallel

implementation of the Fast‐SIFT

algorithm based on Integer Gaussian

on a SIMD pixel processor has been

presented. By using the SIMD pixel

processor system, we exposed fully

the available parallelism of the Fast‐

SIFT algorithm especially in the DoG

space construction step. Preliminary

simulation results suggest that the

SIMD processor system can deliver

real‐time performance for the Fast‐

SIFT algorithm.

Acknowledgements

This research was supported by the

ADD (Agency for Defense

Development) project developing an

autonomous vehicle using multiple

sensors.

Reference

[1] D. Lowe, “Distinctive Image

Features from Scale‐Invariant

Keypoints,” IJCV 60(2):91‐110,

2004

[2] Le Tran Su, Phil Jung Ghang and

Jong soo Lee, “Integer Gaussian

Convolution with cache memory

for real – time processing of the

Scale Invariant Feature Transform

Algorithm”, ITC‐CSCC 2007,

Busan, Korea, 2007

[3] Lowe, D. G., “Object recognition

from local scale‐invariant

features”, International Conference

on Computer Vision, Corfu,

Greece, September 1999

[4] D. Lowe, “Distinctive Image

Features from Scale‐Invariant

Keypoints,” IJCV 60(2):91‐110,

2004

[5] The Pica Group, “the SIMD Pixel

Processor: Micro‐architecture,

Instruction Set and Programmer’s

Model”, Fine‐Grain Parallel

System Laboratory, School of

ECE, Georgia Institute of

Technology, 1995.

[6] Ke, Y., Sukthankar, R.: PCA‐

SIFT: A more distinctive

representation for local image

descriptors. In: Proc. CVPR.

Volume 2. (2004) 506–513

[7] Mikolajczyk, K., Schmid, C.: A

performance evaluation of local

descriptors. IEEE Trans. PAMI 27

(2005) 1615–1630

Ning Xu, Wei‐dong Chen , A High

Real‐time and Robust Object

Recognition and Localization

Algorithm, China Journal of Image

and Graphics, October 2007

52 한국정보전자통신기술학회논문지 제2권 제3호

[8] M. Grabner, H. Grabner, and H.

Bischof. Fast approximated sift. In

P.J. Narayanan, editor, Proc. 7th

Asian Conference on Computer

Vision, volume LNCS 3851, pages

918–927. Springer, 2006

저자약력
Full name: Le Tran Su
Born: 1982
Student of High Quality
Engineer Training Progr
am
(Program with co-opera
tion of French Embass

y) in Hanoi University of Technology. Gra
duated with “Excellent Engineer” degree.
Major in Information and Communication S
ystem
Got Master degree in University of Ulsan
Now is Phd Candidate at Multimedia Appl
ication Laboratory, University of Ulsan

Jong Soo Lee received

his Bachelors degree in

Electrical Engineering in

1973 from Seoul National

University and his M.Eng.

in 1981 and Ph.D degree in

1985 from Virginia

Polytechnic Institute and State University in

the USA. He is currently working in the

area of multimedia at the University of

Ulsan in Korea. His research interests

include development of personal English

cultural experience programs using

multimedia and 3D user interface techniques

to facilitate the acquisition of English

language skills by Koreans.

