DOI QR코드

DOI QR Code

The Advent of Laser Therapies in Dermatology and Urology: Underlying Mechanisms, Recent Trends and Future Directions

  • Lee, Ho (School of Mechanical Engineering, Kyungpook National University) ;
  • Jeong, Yeon-Uk (School of Materials Science & Engineering, Kyungpook National University) ;
  • Chan, Kin F. (Fourier Biotechnologies)
  • Received : 2009.06.26
  • Accepted : 2009.08.25
  • Published : 2009.09.25

Abstract

Following their applications in cardiology, ophthalmology and dentistry among others, the advent of lasers in dermatology and urology had become the success story of the past decade. Laser-assisted treatments in dermatology and urology are mainly based on the laser-induced tissue injury/coagulation and/or ablation, depending upon the desirable clinical endpoint. In this review, we discussed the underlying mechanisms of the laser induced tissue ablation. In any medical laser application, the controlled thermal injury and coagulation, and the extent of ablation, if required, are critical. The laser thermal mechanism of injury is intricately related to the selective absorption of light and its exposure duration, similarly to the laser induced ablation. The laser ablation mechanisms were categorized into four different categories (the photo-thermally induced ablation, the photo-mechanically induced ablation, the plasma induced ablation and the photoablation) and their fundamentals are herein described. The brief history of laser treatment modality in dermatology and urology are summarized.

Keywords

References

  1. S. L. Jacques, 'Laser-tissue interactions: photochemical, photothermal, and photo mechanical,' Surg. Clin. North Am. 72, 531-558 (1992) https://doi.org/10.1016/S0039-6109(16)45731-2
  2. A. J. Welch and M. J. C. van Gemert, Optical-thermal Response of Laser-irradiated Tissue (Plenum Press, New York, USA, 1995), Chapter 21-25
  3. M. H. Niemz, Laser-tissue Interactions: Fundamental and Applications (Springer, Berlin, Germany, 1996)
  4. K. F. Chan, 'Pulsed infrared laser ablation and clinical applications,' Ph.D. Dissertation, Univ. Texas Austin (2000)
  5. H. Lee, 'Pulsed laser-induced material ablation and its clinical applications,' Ph.D. Dissertation, Univ. Texas Austin (2000)
  6. J. S. Nelson,'In this issue. Dermatologic laser surgery,' Lasers Surg. Med. 26, 105-107 (2000) https://doi.org/10.1002/(SICI)1096-9101(2000)26:2<105::AID-LSM1>3.3.CO;2-7
  7. M. B. T. Alora and R. R. Anderson, 'Recent developments in cutaneous lasers,' Lasers Surg. Med. 26, 108-118 (2000) https://doi.org/10.1002/(SICI)1096-9101(2000)26:2<108::AID-LSM2>3.0.CO;2-4
  8. M. Sato, M. Ishihara, T. Arai, T. Asazuma, T. Kikuchi, T. Hayashi, T. Yamada, M. Kikuchi, and K. Fujikawa, 'Use of a new ICG-dye-enhanced diode laser for percutaneous laser disc decompression,' Lasers Surg. Med. 29, 282-287 (2001) https://doi.org/10.1002/lsm.1120
  9. J. G. Sulewski, 'Historical survey of laser dentistry,' Dent. Clin. North Am. 44, 717-752 (2000)
  10. B. M. Lippert, S. Gottschlich, C. Kulkens, B. J. Fol, H. Rudert, and J. A. Werner, 'Experimental and clinical results of Er:YAG laser stapedotomy,' Lasers Surg. Med. 28, 11-17 (2001) https://doi.org/10.1002/1096-9101(2001)28:1<11::AID-LSM1010>3.0.CO;2-M
  11. P. Janda, R. Sroka, R. Baumgartner, G. Grevers, and A. Leunig, 'Laser treatment of hyperplastic inferior nasal turbinates: a review,' Lasers Surg. Med. 28, 404-413 (2001) https://doi.org/10.1002/lsm.1068
  12. K. F. Chan, T. J. Pfefer, J. M. H. Teichman, and A. J. Welch, 'A perspective on laser lithotripsy: the fragmentation processes,' J. Endourol. 15, 257-273 (2001) https://doi.org/10.1089/089277901750161737
  13. E. V. Ross, Y. Domankevitz, M. Skrobal, and R. R. Anderson, 'Effects of $CO_2$ laser pulse duration in ablation and residual thermal damage: implications for skin resurfacing,' Lasers Surg. Med. 19, 123-129 (1996) https://doi.org/10.1002/(SICI)1096-9101(1996)19:2<123::AID-LSM1>3.0.CO;2-U
  14. T. J. Pfefer, B. Choi, G. Vargas, K. M. McNally, and A. J. Welch, 'Pulsed laser-induced thermal damage in whole blood,' T. ASME. J. Biomech. Eng. 122, 196-202 (2000) https://doi.org/10.1115/1.429642
  15. A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, 'Measurement of tissue optical properties by time-resolved detection of laser-induced transient stress,' Appl. Opt. 36, 402-415 (1997) https://doi.org/10.1364/AO.36.000402
  16. I. Itzkan, D. Albagli, M. L. Dark, L. T. Perelman, C. von Rosenberg, and M. S. Feld, 'The thermoelastic basis of short pulsed laser ablation of biological tissue,' Proc. Natl. Acad. Sci. USA 92, 1960-1964 (1995) https://doi.org/10.1073/pnas.92.6.1960
  17. J. T. Walsh and T. F. Deutsch, 'Pulsed $CO_2$ laser ablation of tissue: effect of mechanical properties,' IEEE Trans. Biomed. Eng. 36, 1195-1201 (1989) https://doi.org/10.1109/10.42114
  18. A. A. Oraevsky, S. L. Jacques, and F. K. Tittel, 'Mechanism of laser ablation for aqueous media irritated under confined-stress conditions,' J. Appl. Phys. 78, 1281-1290 (1995) https://doi.org/10.1063/1.360370
  19. J. T. Walsh and T. F. Deutsch, 'Pulsed $CO_2$ laser tissue ablation: measurement of the ablation rate,' Lasers Surg. Med. 8, 264-275 (1988) https://doi.org/10.1002/lsm.1900080308
  20. B. Majaron, P. Plestenjak, and M. Lukac, 'Thermomechanical laser ablation of soft biological tissue: modeling the micro-explosions,' Appl. Phys. B 69, 71-80 (1999) https://doi.org/10.1007/s003400050772
  21. J. P. Cummings and J. T. Walsh, 'Tissue tearing caused by pulsed laser-induced ablation pressure,' Appl. Opt. 32, 494-503 (1993) https://doi.org/10.1364/AO.32.000494
  22. R. Kelly and A. Miotello, 'Comments on explosive mechanisms of laser sputtering,' Appl. Surf. Sci. 96-98, 205-215 (1996) https://doi.org/10.1016/0169-4332(95)00481-5
  23. E. E. B. Campbell, D. Ashkenasi, and A. Rosenfeld, 'Ultra-short-pulse laser irradiation and ablation of dielectrics,' Mater. Sci. Forum. 301, 123-144 (1999) https://doi.org/10.4028/www.scientific.net/MSF.301.123
  24. V. E. Gusev and A. A. Karabutov, Laser Optoacoustics (AIP Press, New York, USA, 1993)
  25. A. Vogel, P. Schweiger, A. Frieser, M. N. Asiyo, and R. Birngruber, 'Intraocular Nd:YAG laser surgery: lighttissue interaction, damage range, and reduction of collateral effects,' IEEE J. Quantum Electron. 26, 2240-2260 (1990) https://doi.org/10.1109/3.64361
  26. S. P. Dretler, 'Laser lithotripsy: a review of 20 years of research and clinical applications,' Lasers Surg. Med. 8, 341-356 (1988) https://doi.org/10.1002/lsm.1900080403
  27. K. Rink, G. Delacretaz, and R. P. Salathe, 'Fragmentation process of current laser lithotriptors,' Lasers Surg. Med. 16, 134-146 (1995) https://doi.org/10.1002/lsm.1900160203
  28. D. Baurele, Laser Processing and Chemistry (Springer, Berlin, Germany, 1996), Chapter 6
  29. P. Nelson, P. Veyrie, M. Berry, and Y. Durand, 'Experimental and theoretical studies of air breakdown by intense pulse of light,' Phys. Lett. 13, 226-228 (1964) https://doi.org/10.1016/0031-9163(64)90465-2
  30. D. W. Fradin, N. Bloembergen, and J. P. Letellier, 'Dependence of laser-induced breakdown field strengthon pulse duration,' Appl. Phys. Lett. 22, 635-637 (1973) https://doi.org/10.1063/1.1654536
  31. J. P. Ready, Effects of High-power Laser Radiation (Academic, New York, USA, 1971), pp. 133-143
  32. J. P. Ready, Effects of High-power Laser Radiation (Academic, New York, USA, 1971), pp. 215-217
  33. A. Vogel, J. Noack, G. Huettmann, and G. Paltauf, 'Femtosecond-laser-produced low-density plasmas in transparent biological media: a tool for the creation of chemical, thermal, and thermomechanical effects below the optical breakdown threshold,' Proc. Soc. Photo. Opt. Instrum. Eng. 4633A, 23-37 (2002)
  34. A. Vogel, K. Nahen, and D. Theisen, 'Plasma formation in water by picosecond and nanosecond Nd:YAG laserpulses. I. Optical breakdown at threshold and superthreshold irradiance,' IEEE J. Quantum Electron. 2, 847-860 (1996) https://doi.org/10.1109/2944.577307
  35. P. P. Pronko, P. A. VanRompay, C. Horvath, T. Juhasz, X. Liu, and G. Mourou, 'Avalanche ionization and dielectric breakdown in silicon with ultrafast laser pulses,' Phys. Rev. B 58, 2387-2390 (1998) https://doi.org/10.1103/PhysRevB.58.2387
  36. M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, 'Femtosecond optical breakdown in dielectrics,'Phys. Rev. Lett. 80, 4076-4079 (1998) https://doi.org/10.1103/PhysRevLett.80.4076
  37. A. C. Tien, S. Bakus, H. Kapteyn, M. Murnane, and G. Mourou, 'Short-pulse laser damage in transparent materials as a function of pulse duration,' Phys. Rev. Lett. 82, 3883-3886 (1999) https://doi.org/10.1103/PhysRevLett.82.3883
  38. M. Bass and H. H. Barrett, 'Avalanche breakdown and the probabilistic nature of laser-induced damage,' IEEE J. Quantum Electron. QE-18, 338-343 (1983) https://doi.org/10.1109/JQE.1972.1076971
  39. D. W. Fradin, E. Yablonovitch, and M. Bass, 'Confirmation of an electron avalanche causing laser-induced bulk damage at 1.06 $\mu$m,' Appl. Opt. 12, 700-709 (1983) https://doi.org/10.1364/AO.12.000700
  40. J. Neev, L. B. Da Silva, M. D. Feit, M. D. Perry, A. M. Rubenchik, and B. C. Stuart, 'Ultrashort pulse lasers for hard tissue ablation,' IEEE J. Quantum Electron. 2, 790-800 (1996) https://doi.org/10.1109/2944.577301
  41. G. J. R. Spooner, T. Juhasz, I. R. Traub, G. Djotyan, C. Horvath, Z. Sacks, G. Marre, D. Miller, A. R. Williams, and R. Kurtz, 'Commercial and biomedical applications of ultrafast lasers,' Proc. Soc. Photo. Opt. Instrum. Eng. 3934, 62-72 (2000)
  42. T. Szorenyi, E. Fogarassy, C. Fuchs, J. Hommet, and F. Le Normand, 'Chemical analysis of $a-CN_x$ thin films synthesized by nanosecond and femtosecond pulsed laser deposition,' Appl. Phys. A 69, 941-944 (1999) https://doi.org/10.1007/s003390051563
  43. M. H. Niemz, 'Cavity preparation with the Nd:YLF picosecond laser,' J. Dent. Res. 74, 194-199 (1995) https://doi.org/10.1177/00220345950740050801
  44. A. V. Rode, E. G. Gamaly, B. Luther-Davies, B. T. Taylor, J. Dawes, A. Chan, R. M. Lowe, and P. Hannaford, 'Subpicosecond laser ablation of dental enamel,' J. Appl. Phys. 92, 2153-2158 (2002) https://doi.org/10.1063/1.1495896
  45. D. L. Matthews, L. Da Silva, B. M. Kim, and J. Marion, 'Surgical applications of ultrashort pulse laser technology,' in Proc. Advanced Solid State Laser Annual Meeting (Boston, MA, USA, 1999), TuA1
  46. R. Srinivasan, P. E. Dyer, and B. Braren, 'Far-ultraviolet laser ablation of the cornea: photoacoustic studies,' Lasers Surg. Med. 6, 514-519 (1987) https://doi.org/10.1002/lsm.1900060606
  47. C. A. Pxuliato, D. Stern, R. R. Kreuger, and E. R. Mandel, 'High-speed photography of excimer laser ablation of the cornea,' Arch. Ophthal. 105, 1255-1259 (1987) https://doi.org/10.1001/archopht.1987.01060090113039
  48. R. R. Anderson and J. A. Parrish, 'Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation,' Science 220, 524-527 (1983) https://doi.org/10.1126/science.6836297
  49. S. Dahan, J. M. Lagarde, V. Turlier, L. Courrech, and S. Mordon, 'Treatment of neck lines and forehead rhytids clinical study combined with the measurement of the thickness and the mechanical properties of the skin,' Dermatol. Surg. 30, 872-879 (2004) https://doi.org/10.1111/j.1524-4725.2004.30256.x
  50. D. Mains, G. S. Herron, R. K. Sink, H. Tanner, and R. R. Anderson, 'Fractional photothermolysis: a new concept for cutaneous remodeling using microscopic patterns of thermal injury,' Lasers Surg. Med. 34, 426-438 (2004) https://doi.org/10.1002/lsm.20048
  51. V. P. Bedi, K. F. Chan, R. K. Sink, B. M. Hantash, G. S. Herron, Z. Rahman, S. K. Struck, and C. B. Zachary, 'The effects of pulse energy variations on the dimensions of microscopic thermal treatment zones in nonablative fractional resurfacing,' Lasers Surg. Med. 39, 145-155 (2007) https://doi.org/10.1002/lsm.20406
  52. B. M. Hantash, V. P. Bedi, K. F. Chan, and C. B. Zachary, 'Ex vivo histological characterization of a novel ablative fractional resurfacing device,' Lasers Surg. Med. 39, 87-95 (2007) https://doi.org/10.1002/lsm.20405
  53. B. M. Hantash, V. P. Bedi, V. Sudireddy, S. K. Struck, G. S. Herron, and K. F. Chan, 'Laser-induced transepidermal elimination of dermal content by fractional photothermolysis,' J. Biomed. Opt. 11, 041115 (2006) https://doi.org/10.1117/1.2241745
  54. B. M. Hantash, V. P. Bedi, B. Kapadia, Z. Rahman, K. Jiang, H. Tanner, K. F. Chan, and C. B. Zachary, In vivo histological evaluation of a novel ablative ' fractional resurfacing device,' Lasers Surg. Med. 39, 96-107 (2007) https://doi.org/10.1002/lsm.20468
  55. J. N. Kabalin, 'Laser prostatectomy performed with a right angle firing neodymium:YAG laser fiber at 40 watts power setting,' J. Urol. 150, 95-99 (1993) https://doi.org/10.1016/S0022-5347(17)35407-1
  56. N. J. Barber and G. H. Muir, 'High-power KTP laser prostatectomy: the new challenge to transurethral resection of the prostate,' Curr. Opin. Urol. 14, 21-25 (2004) https://doi.org/10.1097/00042307-200401000-00005
  57. R. Tooher, P. Sutherland, A. Costello, P. Gilling, G. Rees, and G. Maddern, 'A systematic review of holmium laser prostatectomy for benign prostatic hyperplasia,' J. Urol. 171, 1773-1781 (2004) https://doi.org/10.1097/01.ju.0000113494.03668.6d
  58. S. P. Dretler, 'Laser lithotripsy: a review of 20 years of research and clinical applications,' Lasers Surg. Med. 8, 341–356 (1988) https://doi.org/10.1002/lsm.1900080403
  59. K. F. Chan, G. J. Vassar, T. J. Pfefer, J. M. Teichman, R. D. Glickman, S. T. Weintraub, and A. J. Welch, 'Holmium:YAG laser lithotripsy: a dominant photothermal ablative mechanism with chemical decomposition of urinary calculi,' Lasers Surg. Med. 25, 22-37 (1999) https://doi.org/10.1002/(SICI)1096-9101(1999)25:1<22::AID-LSM4>3.0.CO;2-6
  60. N. M. Fried, 'Thulium fiber laser lithotripsy: an in vitro analysis of stone fragmentation using a modulated 110-watt thulium fiber laser at 1.94 microm,' Lasers Surg. Med. 37, 53-58 (2005) https://doi.org/10.1002/lsm.20196
  61. H. Lee, H. W. Kang, J. M. Teichman, J. Oh, and A. J. Welch, 'Urinary calculus fragmentation during Ho: YAG and Er:YAG lithotripsy,' Lasers Surg. Med. 38, 39–51 (2006) https://doi.org/10.1002/lsm.20258
  62. H. Lee, J.-W. Yoon, Y.-D. Jung, J.-H. Kim, T. R. Robert, M. H. J. Teichman, and A. J. Welch, 'Comparison of sapphire and germanium fibers for erbium: YAG lithotripsy,' J. Opt. Soc. Korea 12, 309-313 (2008) https://doi.org/10.3807/JOSK.2008.12.4.309
  63. C. A. Chaney, Y. Yang, and M. Fried, 'Hybrid germanium/ silica optical fibers for endoscopic delivery of erbium: YAG laser radiation,' Lasers Surg. Med. 34, 5-11 (2004) https://doi.org/10.1002/lsm.10249
  64. Y. Yang, C. A. Chaney, and N. M. Fried, 'Erbium: YAG laser lithotripsy using hybrid germanium/silica optical fibers,' J. Endourol. 18, 830-835 (2004) https://doi.org/10.1089/end.2004.18.830
  65. T. J. Polletto, A. K. Ngo, A. Tchapyjnikov, K. Levin, D. Tran, and N. M. Fried, 'Comparison of germanium oxide fibers with silica and sapphire fiber tips for transmission of erbium:YAG laser radiation,' Lasers Surg. Med. 38, 787-791 (2006) https://doi.org/10.1002/lsm.20382
  66. K. Iwai, Y. W. Shi, K. Nito, Y. Matsuura, T. Kasai, M. Miyagi, S. Saito, Y. Arai, N. Ioritani, Y. Okagami, M. Nemec, J. Sulc, H. Jelinkova, M. Zavoral, O. Kohler, and P. Drlik, 'Erbium:YAG laser lithotripsy by use of a flexible hollow waveguide with an end-scaling cap,' Appl. Opt. 42, 2431-2435 (2003) https://doi.org/10.1364/AO.42.002431

Cited by

  1. Optical Spectroscopic Analysis of Muscle Spasticity for Low-Level Laser Therapy (LLLT) vol.15, pp.4, 2011, https://doi.org/10.3807/JOSK.2011.15.4.373