DOI QR코드

DOI QR Code

RIDGELET TRANSFORM ON SQUARE INTEGRABLE BOEHMIANS

  • Published : 2009.09.30

Abstract

The ridgelet transform is extended to the space of square integrable Boehmians. It is proved that the extended ridgelet transform $\mathfrak{R}$ is consistent with the classical ridgelet transform R, linear, one-to-one, onto and both $\mathfrak{R}$, $\mathfrak{R}^{-1}$.1 are continuous with respect to $\delta$-convergence as well as $\Delta$-convergence.

Keywords

References

  1. T. K. Boehme, The support of Mikusi´nski operators, Trans. Amer. Math. Soc. 176 (1973), 319–334 https://doi.org/10.2307/1996211
  2. E. J. Cand`es, Harmonic analysis of neural networks, Appl. Comput. Harmon. Anal. 6 (1999), no. 2, 197–218 https://doi.org/10.1006/acha.1998.0248
  3. V. Karunakaran and N. V. Kalpakam, Hilbert transform for Boehmians, Integral Transforms, Spec. Funct. 9 (2000), no. 1, 19–36 https://doi.org/10.1080/10652460008819239
  4. V. Karunakaran and R. Roopkumar, Boehmians and their Hilbert transforms, Integral Transforms Spec. Funct. 13 (2002), no. 2, 131–141 https://doi.org/10.1080/10652460212899
  5. V. Karunakaran and R. Roopkumar, Ultra Boehmians and their Fourier transforms, Fract. Calc. Appl. Anal. 5 (2002), no. 2, 181–194
  6. P. Mikusinski, Convergence of Boehmians, Jpn. J. Math. 9 (1983), no. 1, 159–179
  7. P. Mikusinski, Fourier transform for integrable Boehmians, Rocky Mountain J. Math. 17 (1987), no. 3, 577–582
  8. P. Mikusinski, On flexibility of Boehmians, Integral Transforms Spec. Funct. 4 (1996), no. 1-2, 141–146 https://doi.org/10.1080/10652469608819101
  9. P. Mikusi´nski, A. Morse, and D. Nemzer, The two-sided Laplace transform for Boehmians, Integral Transforms Spec. Funct. 2 (1994), no. 3, 219–230 https://doi.org/10.1080/10652469408819051
  10. D. Nemzer, The Laplace transform on a class of Boehmians, Bull. Aust. Math. Soc. 46 (1992), no. 2, 347–352
  11. R. Roopkumar, Wavelet analysis on a Boehmian space, Int. J. Math. Math. Sci. 2003 (2003), no. 15, 917–926 https://doi.org/10.1155/S0161171203205184
  12. R. Roopkumar, Generalized Radon transform, Rocky Mountain J. Math. 36 (2006), no. 4, 1375–1390
  13. R. Roopkumar, Stieltjes transform for Boehmians, Integral Transforms Spec. Funct. 18 (2007), no. 11-12, 819–827 https://doi.org/10.1080/10652460701510642
  14. W. Rudin, Real and Complex Analysis, Mc. Graw Hill Inc., New York, 1987
  15. J. L. Starck, E. J. Cand`es, and D. Donoho, The curvelet transform for image denoising, IEEE Trans. Image Process. 11 (2002), no. 6, 670–684 https://doi.org/10.1109/TIP.2002.1014998
  16. A. I. Zayed and P. Mikusinski, On the extension of the Zak transform, Methods Appl. Anal. 2 (1995), no. 2, 160–172

Cited by

  1. Curvelet transform for Boehmians vol.20, pp.2, 2014, https://doi.org/10.1016/j.ajmsc.2013.10.001
  2. Multidimensional Quaternionic Gabor Transforms vol.26, pp.3, 2016, https://doi.org/10.1007/s00006-015-0634-x
  3. CONVOLUTION THEOREMS FOR FRACTIONAL FOURIER COSINE AND SINE TRANSFORMS AND THEIR EXTENSIONS TO BOEHMIANS vol.31, pp.4, 2016, https://doi.org/10.4134/CKMS.c150244
  4. Stockwell transform for Boehmians vol.24, pp.4, 2013, https://doi.org/10.1080/10652469.2012.686903
  5. Boehmians ofLp- growth vol.27, pp.8, 2016, https://doi.org/10.1080/10652469.2016.1182524
  6. Image compression approach with ridgelet transformation using modified neuro modeling for biomedical images vol.24, pp.7-8, 2014, https://doi.org/10.1007/s00521-013-1414-y
  7. Poisson transform on Boehmians vol.216, pp.9, 2010, https://doi.org/10.1016/j.amc.2010.03.122
  8. EXTENDED RIDGELET TRANSFORM ON DISTRIBUTIONS AND BOEHMIANS vol.04, pp.03, 2011, https://doi.org/10.1142/S1793557111000423
  9. Quaternionic Stockwell transform vol.27, pp.6, 2016, https://doi.org/10.1080/10652469.2016.1155570
  10. Quaternionic curvelet transform vol.131, 2017, https://doi.org/10.1016/j.ijleo.2016.11.011
  11. A unified extension of Stieltjes and Poisson transforms to Boehmians vol.22, pp.3, 2011, https://doi.org/10.1080/10652469.2010.511208
  12. FOURIER SINE AND COSINE TRANSFORMS ON BOEHMIAN SPACES vol.06, pp.01, 2013, https://doi.org/10.1142/S1793557113500058