DOI QR코드

DOI QR Code

Changes in Early Postmortem Contents of ATP and Other Nucleotides in Normal and Poor Quality-simulated Pork

정상돈육과 모의 열등돈육의 사후 초기 ATP 및 관련 뉴클레오타이드 함량 변화

  • Whang, Key (Dept. of Food Science and Technology, Keimyung University)
  • 황기 (계명대학교 식품가공학과)
  • Published : 2009.09.30

Abstract

Early postmortem ATP level is known as a good predictor of pork quality. Pork carcasses were divided into two; one was electrically stimulated (ES) to simulate poor quality pork and the other was left untreated and served as a control normal pork. Fractions of longissimus were excised from carcasses regularly for 2 hours after death and deep-frozen ($-80^{\circ}C$) until analyses. The ATP level of normal untreated control pork decreased from 5.00 to 2.04 ${\mu}mole$/g within 2 hours postmortem. The decrement of ATP was approximately 60% of its initial content. In the meantime, ES poor quality pork had a more drastic rate of ATP decrease. Electrical stimulation itself decreased ATP level from 4.70 to 3.50 ${\mu}mole$/g, by approximately 25%. ATP level of ES pork dropped to 1.71 ${\mu}mole$/g within 1 hour postmortem and was further plunged to 0.26 ${\mu}mole$/g and almost exhausted during the next hour. The level of IMP increased from 0.49 to 3.17 ${\mu}mole$/g and it became the dominant nucleotide within 2 hours postmortem. Electrical stimulation prompted the increase of IMP from 0.69 to 3.19 ${\mu}mole$/g and its level went up to 6.64 ${\mu}mole$/g within 2 hours postmortem. The level of ADP also decreased from 1.45 to 0.67 ${\mu}mole$/g for 2 hours after death and ES also accelerated ADP breakdown. The AMP levels were lower than those of other nucleotides and increased from 0.16 to 0.31 ${\mu}mole$/g within 2 hours postmortem. The increase of AMP was accelerated between 60 and 90 minutes after electrical stimulation. Early postmortem electrical stimulation prompted a drastic rate of changes in contents of 4 nucleotides during 2 hours postmortem. In the meantime, the ATP levels for ES poor quality pork were much lower than those of normal pork.

도체의 반을 전기로 자극하여 만든 모의 열등육과 전기처리하지 않은 대조군 정상 돈육을 실험육으로 준비하고 ATP 및 관련 뉴클레오타이드의 사후 초기 함량 변화를 추적하였다. 정상육의 경우 사후 2시간 이내에 ATP 함량은 5.00에서 2.04 ${\mu}mole$/g으로 약 60% 감소하였고 전기자극 열등육은 단지 전기자극 만으로 ATP가 25% 감소하였으며 자극 후 2시간 이내에 ATP의 잔존 함량은 거의 고갈되어 초기함량의 5% 정도로 감소하였다. IMP의 함량은 정상육의 경우 사후 2시간 이내에 0.49에서 3.17 ${\mu}mole$/g으로 급증하였고 같은 시간 동안 전기자극한 모의 열등육은 6.64 ${\mu}mole$/g까지 증가하여 ATP보다도 높은 함량을 갖는 가장 주된 뉴클레오타이드로 등장하였다. 정상육의 ADP 함량은 사후 2시간 이내에 1.45에서 0.67 ${\mu}mole$/g으로 감소하였고 전기자극은 이 감소폭을 더욱 증가시켰다. AMP의 함량은 4개의 뉴클레오타이드 함량 중 가장 낮았으며 사후 2시간 이내에 함량이 0.16에서 0.31 ${\mu}mole$/g으로 증가하였고 전기자극은이 증가 추세를 더욱 가속화하였다. 종합적으로, 전기자극한모의 열등육의 사후 초기 ATP 감소 속도는 매우 빨라서 그 함량이 정상육보다 훨씬 낮은 수준을 보였고 다른 뉴클레오타이드들의 증감 범위와 속도도 정상육에 비해 훨씬 높았음을 확인하였다.

Keywords

References

  1. Kauffman RG. 2003. Assesing annual definable and potential monetary losses due to quality problems in the US pork industry. Report. U. Wisconsin Meat Sci. and Muscle Biol. Lab
  2. Shen QW, Means WJ, Thompson SA, Underwood KR, Zhu MJ, McCormick RJ, Ford SP, Du M. 2006. Pre-slaughter transport, AMP-activated protein kinase, glycolysis, and quality of pork loin. Meat Sci 74: 388-395 https://doi.org/10.1016/j.meatsci.2006.04.007
  3. Bechtel PJ. 1986. Muscle as food. 2nd ed. Academic Press, Orlando, USA. p 41-46
  4. Scopes RK. 1974. Studies with a reconstituted muscle glycolytic system: the rate and extent of glycolysis in simulated postmortem conditions. Biochemical J 142: 79-86 https://doi.org/10.1042/bj1420079
  5. Bowker BC, Wynveen EJ, Grant AJ, Gerrard DE. 1999. Effects of electrical stimulation on early postmortem pH and temperature declines in pigs from different genetic lines and halothane genotypes. Meat Sci 53: 125-133 https://doi.org/10.1016/S0309-1740(99)00043-1
  6. Hammelman JE, Bowker AL, Grant AL, Forrest JC, Schinckel AP, Gerrard DE. 2003. Early postmortem electrical stimulation simulates PSE pork development. Meat Sci 63: 69-77 https://doi.org/10.1016/S0309-1740(02)00057-8
  7. Passonnau JV, Lowry OH. 1993. Enzymatic Anlaysis: A practical guide. Human Press, Totowa, NJ, USA. p 121- 122
  8. Saito T, Arai K, Matsuyoshi M. 1959. A new method for estimating the freshness of fish. Bull J apan Soc Sci Fish 24: 749-750 https://doi.org/10.2331/suisan.24.749
  9. Jones NR, Murray J, Livinstong EI, Murray CK. 1964. Rapid estimation of hypoxanthine concentrations as index of freshness of chill-stored fish. J Sci Food Agric 15: 763- 774 https://doi.org/10.1002/jsfa.2740151105
  10. Kennish JM, Kramer DE. 1986. A review of high pressure chromatographic methods for measuring nucleotide degradation in fish muscle. In Seafood Quality Determination. Proceedings of an International Symposium Coordinated by the University of Alaska. Kramer DE, Liston J, eds. Elsevier Science Publishers, Amsterdam, Netherlands. p 209-219
  11. Iwamoto M, Yamanaka H, Watabe S, Hashimoto K. 1987. Effect of storage temperature on rigor-mortis and ATP degradation in plaice Paralichtithys olivaceus muscle. J Food Sci 52: 1514-1517 https://doi.org/10.1111/j.1365-2621.1987.tb05867.x
  12. Gomez MC, Beltran A, Moral A. 1992. El valor Kcomo indice de calidad del pescado. II. Metodos de determinacion. Alimentatia 231: 29-34
  13. Murray J, Thomson AB. 1983. Reverse phase ion pair separation of nucleotides and related products in fish muscle. J High Res Chromat Chromatog Commun 6: 209-210 https://doi.org/10.1002/jhrc.1240060411
  14. Persson BA, Karger BL. 1986. Ion pair liquid chromatography. In Practice of High Performance Liquid Chromatography Applications, Equipment and Quantitative Analysis. Engelhardt, ed. Springer-Verlag, Berlin, Germany. p 201-215
  15. Veciana-Nogues MT, Izquiredo-Pulido M, Vidal-Carou MC. 1997. Determination of ATP related compounds in fresh and canned tuna fish by HPLC. Food Chem 59: 467-472 https://doi.org/10.1016/S0308-8146(96)00243-9