DOI QR코드

DOI QR Code

발효녹용의 균주 선별 및 발효녹용의 생리활성

Isolation of Strain for the Preparation of the Fermented Antler and Its Physiological Activities

  • 발행 : 2009.09.30

초록

본 연구에서는 녹용의 효율을 높이고 아울러 새로운 약리효과를 기대하기 위해 녹용을 분해하는 미생물을 탐색하였으며, 선정된 미생물 이용하여 발효시킨 녹용에 대하여 생리활성을 측정하였다. Bacillus sp., Lactobacillus sp. 및 버섯균사체중 녹용발효에 적합 균주로 B. subtilis KH-15, SCB-3과 버섯 균사체인 Cordyceps militaris, Phellinus linteus, Inonotus obliquus 26136, Inonotus obliquus 26147을 이용하여 발효녹용 제조 시 발효물의 고형분 함량은 B.subtilis KH-15와 SCB-3가 가장 높았으며, total sugar, uronic acid, S-GAG 함량은 C. militaris에 의한 발효물이 각각 1619.3 ${\mu}g$/mL, 302.0 ${\mu}g$/mL, 119.9 ${\mu}g$/mL로 가장 높은 함량을 보였으며, sialic acid 함량도 21.6 ${\mu}g$/mL로 B. subtilis KH-15의 24.8 ${\mu}g$/mL보다 다소 낮은 함량을 보였다. 면역 증강을 예측할 수 있는 항보체 활성은 B. subtilis 균주로 발효한 경우는 B. subtilis KH-15 균주의 $ITCH_{50}$값이 42.3%로 SCB-3 29.9%보다 높은 값을 보였으며, 버섯균사체를 이용한 발효 녹용 중에는 C. militaris가 50.1%로 가장 높은 항보체 활성을 보였다. 항산화력을 알 수 있는 ABTS 라디칼 소거능은 B. subtilis KH-15 발효물이 4.97 mg/mL로 가장 높은 소거능을 보였으며, DPPH 라디칼 소거능은 Inonotus obliquus 26147가 16.98 mg/mL의 $IC_{50}$값으로 가장 높은 라디칼 소거능을 보였다. 이상의 결과에 의하면 녹용추출물에 비하여 녹용 발효물은 uronic acid, S-GAG, sialic acid 등 생리활성물질을 많이 함유하였으며, 항보체 활성과 라디칼 소거능이 증진되는 것을 확인하였다. 따라서 녹용자체가 지니는 조혈작용 등 생리활성 외에 항보체 활성처럼 새로운 활성이 발현될 수 있을 뿐만 아니라 라디칼 소거능처럼 기존의 활성을 증진시키는 효과를 가지고 있음을 확인하였다.

This study was conducted to isolate strain for the preparation of fermented antler (Cervus cornu parvum) and evaluate its physiological activities. The growth degrees of twenty-one samples from Bacillus sp., Lactobacillius sp. and mushroom strain on antler extract agar were evaluated in this study, and Bacillus subtilis KH-15, SCB-3, Cordyceps militaris, Phellinus linteus, Inonotus obliquus 26136, and Inonotus obliquus 26147 were selected. The fermented antler extract by C. militaris had relatively higher contents of total sugar (1619.3 ${\mu}g$/mL), uronic acid (302.0 ${\mu}g$/mL), sulfated-glycosaminoglycan (S-GAGs) (119.9 ${\mu}g$/mL) and sialic acid (21.6 ${\mu}g$/mL) than any other extracts. The anti-complementary activities of all fermented antler extracts were higher than non-fermented antler extract, and among these samples, fermented antler extract by C. militaris showed the highest anti-complementary activity (inhibition of 50% total complement hemolysis, $ITCH_{50}$; 50.1% at 1,000 ${\mu}g$/mL). The ability of fermented antler extract by B. subtilis KH-15 to scavenge 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical ($IC_{50}$; 4.97 mg/mL) was significantly the highest (p<0.05), whereas the extract from I. obliquus exerted significantly (p<0.05) high 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity ($IC_{50}$; 16.98 mg/mL) among all samples. The results of this study suggest that physiological effects including immuno-modulating and antioxidant activities of the antler may be increased through fermentation process.

키워드

참고문헌

  1. Choi KY, Hwang SY, Kim SK. 2005. Ethanol exract of antler velvet attenuates testicular toxicity induced by 2,3,7,8- etrachlorodibenzo-ioxin (TCDD) in rats. J Korean Soc Food Sci Nutr 34: 1169-1174 https://doi.org/10.3746/jkfn.2005.34.8.1169
  2. Ha H, Yoon SH. 1996. Analytical studies of constituents of antler. J Korean Soc Food Nutr 25: 279-282
  3. Hong ND, Won DH, Kim NJ, Chang SY, Youn WG, Kim HS. 1991. Studies of analysis of constituent of deer horn (I). Kor J Pharmacogn 22: 171-182
  4. Invankina NF, Isay SV, Busarova NG, Mischenko TY. 1993. Prostaglandin-like activity, fatty acid and phospholipid composition of sika deer (Cervus nippon) antlers at different growth stages. Comp Biochem Physiol B 106: 159-162 https://doi.org/10.1016/0305-0491(93)90022-W
  5. Tsujibo H, Miyake Y, Maruyama K, Inamori Y. 1987. Hypotensive compounds isolated from an alcohol extract of the unossified horn of Cervis elaphus L. var xanthopyugus Milne-Edwang (Rokujo). Isolation of lysophosphatidylcholine as a hypotensive principle and structure-activity study of related compounds. Chem Pharm Bull 35: 654-659 https://doi.org/10.1248/cpb.35.654
  6. Kim KW, Park SW. 1982. A study on the hematopoiesis action of deer horn extract. Korea Biochem J 15: 151-157
  7. Yong JI. 1976. Studies on deer horn; The effect of deer horn on the liver and other organs of cholesterol administered rabbits. J Korea Pharm Sci 6: 26-42
  8. Han SH. 1970. Influence of antler (deer horn) on the enterochromaffin cells in the gastrointestinal mucosa of rats exposed to starvation, heat, cold and electric shock. J Catholic Medical College 19: 157-165
  9. Kang CK, Kim SW. 1989. A study on the biochemical and nutritional inquiry of antler. Korea J Food Nutr 2: 65-71
  10. Kim DH, Han SB, Park JS, Han MJ. 1994. Fermentation of antler and its biological activity. Kor J Pharmacogn 25: 233-237
  11. Chi H, Ji GE. 2005. Transformation of ginsenosides Rb1 and Re from Panax ginseng by food microorganisms. Biotechnol Lett 27: 765-771 https://doi.org/10.1007/s10529-005-5632-y
  12. Choi YM, Kim YS, Ra KS, Suh HJ. 2007. Characteristics of fermentation and bioavailability of isoflavones in Korean soybean paste (doenjang) with application of Bacillus sp. KH-15. Int J Food Sci Technol 42: 1497-1503 https://doi.org/10.1111/j.1365-2621.2006.01371.x
  13. Cabras P, Angioni A. 2000. Pesticide residues in grapes, wine, and their processing products. J Agric Food Chem 48: 967-973 https://doi.org/10.1021/jf990727a
  14. Kosakai M, Yosizawa Z. 1979. A partial modification of the carbazole method of Bitter and Muir for quantification of hexauronic acids. Anal Biochem 93: 295-298 https://doi.org/10.1016/S0003-2697(79)80154-2
  15. Farndale RW, Sayers CA, Barrett AJ. 1982. A direct spectrophotometric microassay for sulfated glycosaminoglycans in cartilage cultures. Connect Tissue Res 9: 247-248 https://doi.org/10.3109/03008208209160269
  16. Warren L. 1959. The thiobarbituric acid assay of sialic acids. J Biol Chem 234: 1971-1975
  17. Brand-Williams W, Cuvelier ME, Berset C. 1995. Use of a free radical method to evaluate antioxidant activity. Technology 28: 25-30
  18. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26: 1231-1237 https://doi.org/10.1016/S0891-5849(98)00315-3
  19. Mayer MM. 1971. Complement and complement fixation. In Experimental Immunolochemistry. 2nd ed. Charles C Thomas Publisher, Illinois, USA. p 133-240
  20. Yoo Y, Kim Y, Jhon GJ, Park J. 1993. Separation of gangliosides using cyclodextrin in capillary zone electrophoresis. J Chromatogr A 652: 431-439 https://doi.org/10.1016/0021-9673(93)83263-R
  21. Park PJ, Jeon YJ, Moon SH, Jeon BT. 2005. Chemical composition and biological activity of velvet antler. Food Ind Nutr 10: 50-59
  22. Min KC, Jo JS, Kim ES. 1984. Studies on the nonstarchy polysaccharides of Korean ginseng, Panax ginseng C.A. Meyer: II. Physico-chemical properties of pectic substances. Korean J Ginseng Sci 8: 105-113
  23. Gao Q, Kiyohara H, Cyong J, Yamada H. 1989. Chemical properties and anti-complementary activities of polysaccharide fractions from roots and leaves of Panax ginseng. Planta Med 55: 9-12 https://doi.org/10.1055/s-2006-961765
  24. Tsukagoshi S, Hashimoto Y, Fuji G, Kobayashi H, Nomoto K, Orita K. 1984. Krestin (PSK). Cancer Treat Rev 11: 131-155 https://doi.org/10.1016/0305-7372(84)90005-7
  25. Kwon MH, Sung HJ. 1997. Characteristics of immune response by polysaccharides with complement system activity. Food Sci Indus 30: 30-43
  26. Jung YJ, Chun H, Kim KI, An JH, Shin DH, Hong BS, Cho HY, Yang HC. 2002. Purified polysaccharide activating the complement system from leaves of Diospyos kaki L. Korean J Food Sci Technol 34: 879-884

피인용 문헌

  1. Immunomodulatory Activity of Crude Polysaccharides from Makgeolli vol.43, pp.2, 2014, https://doi.org/10.3746/jkfn.2014.43.2.238
  2. Hematopoietic effect of fermented deer antler extract in iron deficient diet-induced anemic rats 2016, https://doi.org/10.1007/s11655-016-2598-7
  3. Hematopoietic Effect ofBacillus subtilis–Fermented Antler Extract on Phenylhydrazine-Induced Hemolytic Anemia in Sprague–Dawley Rats vol.15, pp.9, 2012, https://doi.org/10.1089/jmf.2012.2264
  4. Enhancement of exercise endurance capacity by fermented deer antler in BALB/c mice vol.78, pp.10, 2014, https://doi.org/10.1080/09168451.2014.930324
  5. Stimulation of osteoblastic differentiation and mineralization in MC3T3-E1 cells by antler and fermented antler using Cordyceps militaris vol.133, pp.2, 2011, https://doi.org/10.1016/j.jep.2010.10.047
  6. Changes in Properties of Deer Antler by Proteolysis and Extraction Conditions vol.40, pp.1, 2011, https://doi.org/10.3746/jkfn.2011.40.1.089
  7. Hematopoietic effect of deer antler extract fermented byBacillus subtilison murine marrow cells vol.9, pp.5, 2015, https://doi.org/10.4162/nrp.2015.9.5.451
  8. 녹각 및 목이버섯의 젖산발효를 통한 GABA 생산 및 항염증활성 효과 vol.24, pp.2, 2017, https://doi.org/10.11002/kjfp.2017.24.2.274
  9. Fermented Antler Improves Endurance during Exercise Performance by Increasing Mitochondrial Biogenesis and Muscle Strength in Mice vol.11, pp.12, 2021, https://doi.org/10.3390/app11125386