DOI QR코드

DOI QR Code

Synthesis and Characterization of Silver Nanofluid Using Pulsed Wire Evaporation Method in Liquid-Gas Mixture

액상/기상중 전기선 폭발법을 이용한 은 나노유체의 제조 및 특성평가에 관한 연구

  • Kim, Chang-Kyu (Nuclear Materials Research Division, Korea Atomic Energy Research Institute (KAERI)) ;
  • Lee, Gyoung-Ja (Nuclear Materials Research Division, Korea Atomic Energy Research Institute (KAERI)) ;
  • Rhee, Chang-Kyu (Nuclear Materials Research Division, Korea Atomic Energy Research Institute (KAERI))
  • 김창규 (한국원자력연구원 원자력재료연구부) ;
  • 이경자 (한국원자력연구원 원자력재료연구부) ;
  • 이창규 (한국원자력연구원 원자력재료연구부)
  • Published : 2009.09.27

Abstract

The silver nanofluids were synthesized by the pulsed wire evaporation (PWE) method in a liquid-gas mixture. The size and microstructure of nanoparticles in the deionized water were investigated by a particle size analyzer (PSA), transmission electron microscope (TEM), and scanning electron microscope (SEM). Also, the synthesized nanofluids were investigated in order to assess the stability of dispersion of nanofluid by the zetapotential analyzer and dispersion stability analyzer. The results showed that the spherical silver nanoparticle formed in the deionized water and mean particle size was about 50 nm. Also, when explosion times were in the range of 20$\sim$200 times, the absolute value of zeta potential was less than -27 mV and the dispersion stability characteristic of low concentration silver nanofluid was better than the high concentration silver nanofluid by turbiscan.

Keywords

References

  1. K. H. Kim, J. H. Sim and I. H. Bae, Kor. J. Mater. Res., 18, 610 (2008) https://doi.org/10.3740/MRSK.2008.18.11.610
  2. G. Schmin, Chem. Rev., 92, 1709 (1992) https://doi.org/10.1021/cr00016a002
  3. W. Jiang and K. Yatsui, IEEE Trans. Plasma. Sci., 26, 1498 (1998) https://doi.org/10.1109/27.736045
  4. C. B. Hwang, Y. S. Fu and S. J. Yu, J. Catal., 195, 336 (2000) https://doi.org/10.1006/jcat.2000.2992
  5. E. J. Bjerneld. F. Svedberg and M. Kall, NanoLetters, 3, 593 (2003) https://doi.org/10.1021/nl034034r
  6. R. Narayanan and M. A. El-sayed, J. Am. Chem. Soc., 3, 8340 (2003) https://doi.org/10.1021/ja035044x
  7. S. U. S. Choi, Trans. ASME, 131, 033106 (2009) https://doi.org/10.1115/1.3056479
  8. M. Chopkar, P. K. Das. and I. Manna, Scr. Mater., 55, 549 (2006) https://doi.org/10.1016/j.scriptamat.2006.05.030
  9. Z. H., Zhang. S .C. Liu and Y . Tang, Appl. Phys. Lett., 89, 023123 (2006) https://doi.org/10.1063/1.2221905
  10. J. Brian, Kirby, F. Ernest and Jr. Hasselbrink, Electrophoresis, 25, 187 (2004) https://doi.org/10.1002/elps.200305754
  11. O. Mengual, G. Meunier, I. Cayre, K. Puech and P. Snabre, Colloids and Surfaces, 152, 111 (1999) https://doi.org/10.1016/S0927-7757(98)00680-3
  12. Y. A. Kotov and O. M. Samatov, Nanostructured Materials, 12, 119 (1999) https://doi.org/10.1016/S0965-9773(99)00078-1
  13. Y. A. Kotov, J. Nanoparticle research, 5, 539 (2003) https://doi.org/10.1023/B:NANO.0000006069.45073.0b
  14. R. J. Hunter, Zeta Potential in Colloid Science, p.386, Academic Press, New York, (1981)