DOI QR코드

DOI QR Code

Electrical and Optical Property of Single-Wall Carbon Nanotubes Films

단일벽 탄소나노튜브 필름의 전기적 및 광학적 특성

  • Oh, Dong-Hoon (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kang, Young-Jin (Department of Materials Science and Engineering, Chungnam National University) ;
  • Jung, Hyuck (Department of Materials Science and Engineering, Chungnam National University) ;
  • Song, Hye-Jin (Department of Materials Science and Engineering, Chungnam National University) ;
  • Cho, You-Suk (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Do-Jin (Department of Materials Science and Engineering, Chungnam National University)
  • 오동훈 (충남대학교 공과대학 재료공학과 나노 재료 응용 실험실) ;
  • 강영진 (충남대학교 공과대학 재료공학과 나노 재료 응용 실험실) ;
  • 정혁 (충남대학교 공과대학 재료공학과 나노 재료 응용 실험실) ;
  • 송혜진 (충남대학교 공과대학 재료공학과 나노 재료 응용 실험실) ;
  • 조유석 (충남대학교 공과대학 재료공학과 나노 재료 응용 실험실) ;
  • 김도진 (충남대학교 공과대학 재료공학과 나노 재료 응용 실험실)
  • Published : 2009.09.27

Abstract

Thin films of single-wall carbon nanotubes (SWNT) with various thicknesses were fabricated, and their optical and electrical properties were investigated. The SWNTs of various thicknesses were directly coated in the arc-discharge chamber during the synthesis and then thermally and chemically purified. The crystalline quality of the SWNTs was improved by the purification processes as determined by Raman spectroscopy measurements. The resistance of the film is the lowest for the chemically purified SWNTs. The resistance vs. thickness measurements reveal the percolation thickness of the SWNT film to be $\sim$50 nm. Optical absorption coefficient due to Beer-Lambert is estimated to be $7.1{\times}10^{-2}nm^{-1}$. The film thickness for 80% transparency is about 32 nm, and the sheet resistance is 242$\Omega$/sq. The authors also confirmed the relation between electrical conductance and optical conductance with very good reliability by measuring the resistance and transparency measurements.

Keywords

References

  1. C. Liu, Y. Y. Fan, M. Liu, H. T. Cong, H. M. Cheng and M. S. Desselhaus, Science, 286(5442), 1127 (1999) https://doi.org/10.1126/science.286.5442.1127
  2. C. Liu, Y. Y. Fan, M. Liu, H. T. Cong, H. M. Cheng and M. S. Desselhaus, Science, 286(5442), 1127 (1999) https://doi.org/10.1126/science.286.5442.1127
  3. S. H. Shiau, C. W. Liu, C. Gau and B. T. Dai, Nanotechnology, 19(10), 105303 (2008) https://doi.org/10.1088/0957-4484/19/10/105303
  4. Y. J. Kang, D. H. Oh, H. J, Song, J. Y. Jung, H. Jung, Y. S. Cho and D. J. Kim, Kor. J. Mater. Res., 18(5), 253 (2008) https://doi.org/10.3740/MRSK.2008.18.5.253
  5. H. J. Song, Y. S. Cho, M. C. An, Y. J. Kang and D. J. Kim, J. Kor. Phys. Soc., 53(4), 2111 (2008)
  6. J. Y. Jung, H. J. Song, Y. J. Kang, D. H. Oh, H. Jung, Y. S. Cho and D. J. Kim, Kor. J. Mater. Res., 18(10), 529 (2008) https://doi.org/10.3740/MRSK.2008.18.10.529
  7. M. Valcarcel, S. Cardenas and B. M. Simonet, Anal, Chem, 79(13), 4788 (2007) https://doi.org/10.1021/ac070196m
  8. D. Zhang, K. Ryu, X. Liu, E. Polikarpov, J. L. Mark, E. Tompson and C. Zhou, Nano lett., 6(9), 1880 (2006) https://doi.org/10.1021/nl0608543
  9. G. Gruner, J. Mater. Chem., 16(35), 3533 (2006) https://doi.org/10.1039/b603821m
  10. D. H. Shin, H. C. Shim, J. W. Song, S. Kim and C. S. Han, Scripta Materialia, 60(8), 607 (2009) https://doi.org/10.1016/j.scriptamat.2008.12.019
  11. Y. Zhou, L. Hu and G. Gruner, Appl. Phys. Lett., 88(12), 123109 (2006) https://doi.org/10.1063/1.2187945
  12. B. Ruzicka, L. Degiorgi, R. Gaal, L. Thien-Nga, R. Bacsa, J. P. Salvetat and L. Forro, Phys. Rev. B, 61(4), R2468 (2000) https://doi.org/10.1103/PhysRevB.61.R2468

Cited by

  1. Fabrication of graphene-carbon nanotubes composite-based flexible transparent conductive films and their improved durability on repetitive strain vol.110, pp.1, 2013, https://doi.org/10.1007/s00339-012-7399-z
  2. Effect of repetitive strain on the electrical durability of graphene-based, flexible, transparent, conductive films vol.62, pp.2, 2013, https://doi.org/10.3938/jkps.62.263
  3. Iron Oxide-Carbon Nanotube Composite for NH3 Detection vol.26, pp.4, 2016, https://doi.org/10.3740/MRSK.2016.26.4.187