자연동(自然銅)의 투여가 인체의 뼈모세포 활성과 생쥐 정강이뼈 골절에 미치는 영향

Effects of Administration of Pyritum on Activation of Osteoblast Cells in Human Body & on Tibia Bone Fracture in Mice

  • 황지혜 (동국대학교 한의과대학 침구학교실) ;
  • 안지현 (동국대학교 의과대학 정형외과학교실) ;
  • 김진택 (동국대학교 한의과대학 해부조직학교실) ;
  • 안상현 (동국대학교 한의과대학 해부조직학교실) ;
  • 김경호 (동국대학교 한의과대학 침구학교실) ;
  • 조현석 (동국대학교 한의과대학 침구학교실) ;
  • 이승덕 (동국대학교 한의과대학 침구학교실) ;
  • 김은정 (동국대학교 한의과대학 침구학교실) ;
  • 김갑성 (동국대학교 한의과대학 침구학교실)
  • Hwang, Ji-Hye (Dept. of Acupuncture & Moxibustion, College of Oriental Medicine, Dongguk University) ;
  • Ahn, Ji-Hyun (Dept. of Orthopedics, College of Medicine, Dongguk University) ;
  • Kim, Jin-Teck (Dept. of Anatomy & Histology, College of Oriental Medicine, Dongguk University) ;
  • Ahn, Sang-Hyun (Dept. of Anatomy & Histology, College of Oriental Medicine, Dongguk University) ;
  • Kim, Kyung-Ho (Dept. of Acupuncture & Moxibustion, College of Oriental Medicine, Dongguk University) ;
  • Cho, Hyun-Seok (Dept. of Acupuncture & Moxibustion, College of Oriental Medicine, Dongguk University) ;
  • Lee, Seung-Deok (Dept. of Acupuncture & Moxibustion, College of Oriental Medicine, Dongguk University) ;
  • Kim, Eun-Jung (Dept. of Acupuncture & Moxibustion, College of Oriental Medicine, Dongguk University) ;
  • Kim, Kap-Sung (Dept. of Acupuncture & Moxibustion, College of Oriental Medicine, Dongguk University)
  • 발행 : 2009.04.20

초록

Backgrounds and Objectives: A fracture means a loss of continuity in the substance of bone. Bone differs from other musculoskeletal tissue due to its ability to repair and heal itself without leaving a scar. The cutter head has multinucleated osteoclast cells to resorb the dead bone. The tail, with its conical surface, is lined with osteoblast cells laying down new bone. The conjugation of fracture is a unique biological process regulated by a complex array of signaling molecules and proinflammatory cytokines. Pyritum, one of the important prescriptions in the oriental medicine, has been used for conjugation fracture. The purpose of this study is to evaluate the effects of administration of Pyritum on activation of osteoblast cells in human body & on tibia bone fracture in mice. Materials and Methods : Four weeks aged 30 female DBA mice were used for this study. They were divided three groups, normal group, control group(fracture elicitate mice: FE group) and experimental group(Pyritum administered mice group after fracture elicitation : PA group). Left tibia bones of mice in FE and PA groups were fractured by bone cutters. MG-63 cells in human body th Pyritum in the ratio of 1 mg/m${\ell}$, and the cells were further incubated for 24 hours. Activation of osteoblast was identified using osteopontin, FGF in vitro test. In vivo test, regeneration of fractured tibia through the morphological changes was observed, and also activation of inflammation through NF-${\kappa}$B p65, iNOS, COX-2, osteoblast through osteopontin, FGF and osteoblast's proliferation in each group was measured. Results and Conclusions : 1. In vitro test for activation of osteoblast cells in human body by Pyritum, osteopontin and FGF production were remarkably increased in Pyritum treated MG-63 cells. 2. In regeneration of fractured tibia by Pyritum, fractured area in external tibia morphology was decreased more in the PA group than that of the FE group. Osteogenesis in fractured area was increased more in the PA group than that of the FE group. Also, endochodrial ossification in central area of fracture and osteoid in lateral area of fracture were increased more in the PA group than those of the FE group. 3. In activation of inflammation by Pyritum administered, activation of NF-${\kappa}$B p65, increase of iNOS and COX-2 production were higher in the PA and the FE groups than those of the control group. Especially, the PA group showed higher activation and increase than those of the FE group. 4. In activation of osteoblast by Pyritum, increase of osteopontin, FGF and osteoblast's proliferation were higher in the PA and the FE groups than those of the control group. Especially, the PA group showed higher increase and proliferation than those of the FE group.

키워드

참고문헌

  1. 대한병리학회. 병리학. 서울 : 고문사. 2000 : 1015-7
  2. John W, Hole J. Human Anatomy Physiology. Oxford: WC Brown publisher. 1993 : 170-227.
  3. Hulth A. Basic science and pathology : Current concepts of fracture healing. Clin Orthop Real Res 249 : 265-284, 1989.
  4. 대한정형외과학회. 정형외과학. 서울 : 최신의학사. 1999 : 557-59, 572-80.
  5. 王燾. 外臺秘要. 서울 : 成輔社. 1975 : 749-50.
  6. 한방재활의학과학회. 한방재활의학과학. 서울 : 군자출판사. 2003 : 210-1.
  7. 이한구, 정문상, 윤강섭. 한국 인삼이 골절치유에 미치는 영향. 대한정형외과학회지. 1984 ; 19(3) : 483-91.
  8. 서현주, 김준한, 곽동윤, 전선민, 구세광, 이재현, 문광덕, 최명숙. 늑골골절을 유도한 흰쥐에서 홍화씨 분말 및 분획들의 급여가 골절 회복 중 골 조직에 미치는 영향. 한국영양학회지. 2000 33(4) : 411-20.
  9. 송해룡, 라도경, 김종수, 정태성, 김용환, 강호조, 강정부, 연성찬, 김은희, 이후장, 신기욱, 박미림, 김곤섭. 홍화씨가 신생골 형성에 미치는 영향. 한국임상수의학회지 2002 ; 19(1) : 66-72.
  10. 김진호, 오승환. 동종골의 치유 과정에 홍화씨를 첨가한 히알루론산의 골 형성에 미치는 영향. 원광치의학. 2003 ; 12(1) : 167-87.
  11. 손원택. 순기활혈탕이 흰쥐의 골절유합에 미치는 영향. 한방재활의학과학회지. 1999 ; 9(2) : 350-62.
  12. 금동호 自然銅이 흰쥐의 골절유합에 미치는 영향. 한방재활의학과학회지. 2002 ; 12(2) : 51-68.
  13. 정인희, 최현식. 산골이 골절치유에 미치는 영향에 대한 연구. 대한정형외과학회 학술대회 초록집. 1968 ; 단행권 단일호 : 29.
  14. 이홍초. 동의광물학. 부산 : 부산대학교출판부. 1998 : 296-308.
  15. 허준. 동의보감. 서울 : 법인문화사. 1999 : 1522.
  16. 민평기, 서영배. 자연동의 수치법에 대한 문헌적 고찰. 대전대학교 한의학연구소 논문집. 2001 ; 10(1) : 47-53.
  17. 최호영, 김기동, 우경하. 자연동 포제의 규격화 연구. 대한본초학회지. 1999 ; 14(1) : 29-35.
  18. 국윤범. 自然銅(산골)의 품질표준화 및 炮製 전후의 성분 비교. 대한본초학회지. 2003 ; 18(1) : 21-31.
  19. 최호영. 시판되는 自然銅 및 煅自然銅의 기원 연구. 대한본초학회지. 1999 ; 14(1) : 23-7.
  20. 윤혜경, 노영수. 藥用 自然銅 中 金屬元素의 흰쥐에서의 相互作用에 관한 연구. 경희동서약학연구소보. 1994 ; 11권 단일호 : 145-6.
  21. 신민교. 임상본초학. 서울 : 영림사. 1996 : 172, 237, 242, 310, 467, 477, 522, 529, 534, 540.
  22. 최진봉, 이철완. 趺撲, 打撲, 墜落에 起因한 疾病의 文獻的 考察. 韓方物理療法科學會誌 1994 ; 4(1) : 259.
  23. 배춘식, 조용성, 장경진. 전기자극과 Vitamin ADE가 rat의 골절 치유에 미치는 영향. 대한수의학회지. 1997 ; 37(4) : 863-73.
  24. 엄기동. 비타민-D3와 인산칼슘의 토끼 대퇴골 골절치유 효과에 대한 골수강내 정맥 조영술. 한국임상수의학회지. 1993 ; 10(2) : 185-92.
  25. 김현우. 난소절제술을 시행한 백서에서 간헐적인 부갑상선호르몬 투여가 골절치유에 미치는 영향. 대한정형외과학회지. 1999 ; 34(1) : 207-17.
  26. 정윤정. 토끼의 비골골절에서 산화구리의 골재생 효과. 한국임상수의학회지. 2003 ; 20(4) : 458-66.
  27. 배춘식. 크기가 다른 전압의 전기자극이 랫드 골절치유에 미치는 영향에 관한 연구. 생명과학지 1996 ; 3 : 11-21.
  28. 정문상. 각운동(Angulatory Motion)이 골절치유 (Fracture healing)에 미치는 영향. 대한정형외과학회지. 1981 ; 16(1) : 20-7.
  29. 한의학대사전편찬위원회. 한의학대사전. 서울 : 정담. 1998 : 1324.
  30. 동의학연구소. 동의학총서 8(동약법제). 서울 : 여강출판사. 1994 : 387-8.
  31. 李時珍. 校訂本 本草網目. 서울 : 의성당. 1993 : 466-8.
  32. 李梃. 新校 編註醫學入門. 서울 : 대성문화사 1996 : 491, 630.
  33. 黃道淵. 證脈方藥合編. 서울 : 남산당. 1998 : 334.
  34. 吳儀洛. 本草從新. 서울 : 행림출판. 1989 : 203.
  35. 黃宮繡. 本草求眞. 台北 : 宏業書局有限公司. 1975 : 244.
  36. Tamiyo K, Taejoon C, Toshimi A, Masashi Y, Nasser N, Dana G, Louis C, Thomas A. Exppression of osteoprotegerin, receptor activator of NF-kB ligand(osteoprotegerin ligand) and related proinflammatory cytokines during fracture healing. J Bone & Mineral Research. 2001 ; 16(6) : 1004-14. https://doi.org/10.1359/jbmr.2001.16.6.1004
  37. Muneaki I, Yoichi E, Kunikazu T, Susan RR, Hisashi K, David TD, Mitsuru E, Akira N and Masaki N. Osteopontin is associated with nuclear factor $\kappa$B gene expression during tail-suspension-induced bone loss. Experimental Cell Research. 2006 ; 312(16) : 3075-83. https://doi.org/10.1016/j.yexcr.2006.06.003
  38. Baeuerle P A and Baltimore D. NF-$\kappa$B - Ten years after. Cell. 1996 ; 87 : 13-20. https://doi.org/10.1016/S0092-8674(00)81318-5
  39. Anggard E. Nitric oxide : mediator, murderer, and medicine. Lancet. 1994 ; 9 : 1199-206.
  40. Leah F, Damian CG and Clare EY. Hypoxic osteocytes recruit human MSCs through an OPN/CD44-mediated pathway. Biochemical and Biophysical Research Communications. 2008 ; 366(4) : 1061-66. https://doi.org/10.1016/j.bbrc.2007.12.076
  41. Yasemin B, Ashish DD, Richard CA, Zhi MF, Yao W and George ACM. Deletion of iNOS gene impairs mouse fracture healing. Bone. 2005 ; 37(1) : 32-6. https://doi.org/10.1016/j.bone.2004.10.002
  42. Groszmann RJ, Hyperdynamic state in chronic liver diseases. J Hepatol. 1993 ; 17(2) : S38-40. https://doi.org/10.1016/S0168-8278(05)80454-4
  43. HJ RothkOtter, R Pabst and M Bailey. Lymphocyte migration in the intestinal mucosa : entry, transit and emigration of lymphoid cells and the influence of antigen. Vetrinary Immuno immunopath. 1999 ; 72 : 157-65. https://doi.org/10.1016/S0165-2427(99)00128-2
  44. Tsujii M, Kawano S, Tsuji S, Sawaoka H, Hori M, DuBois RN. Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell. 1998 ; 93(5) : 705-16. https://doi.org/10.1016/S0092-8674(00)81433-6
  45. Andrew BS and Yuehuei HA. Is there an inhibitory effect of COX-2 inhibitors on bone healing? Pharmacological Research. 2004 ; 50(2) : 151-6. https://doi.org/10.1016/j.phrs.2003.12.017
  46. Christian C. General principles of fracture treatment. In : ST Canale Editor, Campbell's operative orthopaedics. St Louis : Mosby. 1988 : 1993-2041.
  47. Brian HM, Spencer TC, Paul SW, Theodore M, Gayle EL and Gary DB. Effect of COX-2 inhibitors and non-steroidal anti-inflammatory drugs on a mouse fracture model. Injury. 2006 ; 37(9) : 827-37. https://doi.org/10.1016/j.injury.2005.12.018
  48. Ornitz DM and Marie PJ, FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev. 2002 ; 16 : 1446-65. https://doi.org/10.1101/gad.990702
  49. Fakhry A. Effects of FGF-2/-9 in calvarial bone cell cultures : differentiation stage-dependent mitogenic effect, inverse regulation of BMP-2 and noggin, and enhancement of osteogenic potential. Bone. 2005 ; 36 : 254-66. https://doi.org/10.1016/j.bone.2004.10.003
  50. Zhang X, Sobue T and Hurley MM. FGF-2 increases colony formation, PTH receptor, and IGF -1 mRNA in mouse marrow stromal cells. Biochem Biophys Res Commun. 2002 ; 290 : 526-31. https://doi.org/10.1006/bbrc.2001.6217
  51. Rebecca AJ, Victor N and Simon MC. Coordinated fibroblast growth factor and heparan sulfate regulation of osteogenesis. Gene. 2003 ; 379 : 79-91. https://doi.org/10.1016/j.gene.2006.04.028
  52. Martin K, Lisa MM, Arthur S, Laurence SF, Michael JW, Cindy W, Madhu P, Randall WB, Michael L, Donna JM, Elaine L, Donald KC, Barbara O and James M. Measuring cell proliferation in rectal mucosa : Comparing bromodeoxyuridine(Brdu) and proliferating cell nuclear antigen(PCNA) assays. J Clin Epidem. 2000 ; 53 : 875-83. https://doi.org/10.1016/S0895-4356(99)00180-8
  53. Weizmann S, Tong A, Reich A, Genina O, Yayon O and Monsonego-Ornan E. FGF upregulates osteopontin in epiphyseal growth plate chondrocytes: Implications for endochondral ossification. Matrix Biology. 2005 ; 24(8) : 520-9. https://doi.org/10.1016/j.matbio.2005.07.003
  54. Gordjestani M, Dermaut L, De Ridder L, Thierens H, De Waele P, De Leersnijder WW and Bosman F. Osteopontin and bone metabolism: a histology and scintigraphy study in rats. International Journal of Oral and Maxillofacial Surgery. 2005 ; 34(7) : 794-9. https://doi.org/10.1016/j.ijom.2005.04.013
  55. Kasugai S, Todescan R, Nagata T, Yao KL, Butler WT and Sodek J. Expression of bone matrix proteins associated with mineralized tissue formation by adult rat bone marrow cells in vitro: inductive effects or dexamethasone on the osteoblast phenotype. J Cell Physiol. 2003 ; 147 : 111-20. https://doi.org/10.1002/jcp.1041470115
  56. Rousseau F, Saugier P, Le Merrer M, Munnich A, Delezoide AL, Maroteaux P, Bonaventure J, Narcy J and Sanak M. Stop codon FGFR3 mutations in thanatophoric dwarfism type 1. Nat Genet. 1995 ; 10 : 11-2. https://doi.org/10.1038/ng0595-11