Densified Pellet Fuel Using Woody Core of Industrial Hemp (Cannabis sativa L.) as an Agricultural waste

농업부산물인 산업용 대마(Cannabis sativa L.) 목부를 이용한 고밀화 펠릿 연료

  • Han, Gyu-Seong (Department of Wood & Paper Science, Chungbuk National University) ;
  • Lee, Soo-Min (Department of Forest Products, Korea Forest Research Institute) ;
  • Shin, Soo-Jeong (Department of Wood & Paper Science, Chungbuk National University)
  • Published : 2009.08.30

Abstract

We prepared densified wood pellet by agricultural waste. The hemp woody core was used as replacing wood resource. Hemp was separated into the bast fiber and the woody core by hot steaming treatment. The hemp woody core had a similar lignin content(19.4%) and carbohydrate composition with hardwood(20-25% lignin in hardwood), respectively. Also, the hemp had a low ash content(0.5%), which resulted in a low ash formation in pellet burning. Heating value of the hemp pellet(18.40 MJ/kg) had a very similar to the pellet made by hardwoods. The hemp woody core could be replaced the hardwood for densified wood pellet.

종자 수확 후 버려지는 산업용 대마를 이용한 목질 펠릿제조 가능성과 제조된 펠릿의 특성을 살펴보았다. 산업용 대마의 성분 분석 결과 활엽수와 비슷한 리그닌 함량과 당구성을 보였으며, 회분 분석 결과 무기물 함량이 0.5% 정도이어서 연료로 사용할 경우 재의 생산량은 크지 않을 것이다. 원소 분석 결과 대기 오염을 유발할 수 있는 질소와 황 함량을 분석한 결과, 황 성분은 전혀 포함하지 않고 있으며, 약간의 질소 성분을 포함하고 있는데 이는 현사시나무와 비슷한 수준이었다. 고위발열량 측정 결과 대마 목부는 현사시나무보다 다소 낮은 값을 나타내었다. 바이오매스 생산량이 큰 대마 목부를 이용하여 제조한 펠릿은 활엽수로 제조한 펠릿과 비슷한 화학적 성질과 발열 특성을 가질 것으로 기대되어 고체연료로서의 이용이 가능할 것으로 사료되었다.

Keywords

References

  1. Industrial Hemp information(www.industrialhemp.net)
  2. Kauter, D., I. Lewandowski and Claupein, W. 2003. Quantity and quality of harvestable biomass from Populus short rotation coppice for solid fuel use-a review of the physiological basis and management influence. Biomass Bioenerg 24: 411-427 https://doi.org/10.1016/S0961-9534(02)00177-0
  3. Kendell, R. 2003. Cannabis condemned: the proscription of Indian hemp. Addiction. 98(2): 143-151 https://doi.org/10.1046/j.1360-0443.2003.00273.x
  4. Lee, Y.C. 1996. Carbohydrate analyses with highperformance anion-exchange chromatography. Journal of Chromatography. A. 720: 137-149 https://doi.org/10.1016/0021-9673(95)00222-7
  5. Mani, S., L. G. Tabil, and Sokhansanj, S. 2006. Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses, Biomass Bioenerg. 30: 648-654 https://doi.org/10.1016/j.biombioe.2005.01.004
  6. Morrison, W.H., D.E. Akin, D.D. Archibald, R.B. Dodd and Raymer, P.L. 1999. Chemical and instrumental characterization of maturing kenaf core and bast, Ind. Crops Prod. 10(1): 21-34 https://doi.org/10.1016/S0926-6690(99)00002-3
  7. NICS online crop information(http://crop.nics.go.kr/)
  8. Ohtani, Y., Mazumder, B.B. and Sameshima, K. 2001. Influence of the chemical composition of kenaf bast and core on the alkaline pulping response. J. Wood Sci. 47:30-35 https://doi.org/10.1007/BF00776642
  9. Okash, F. 2007. Staged combustion of rice straw in a fludized bed, Exp. Therm. Fluid Sci. 32: 52-59 https://doi.org/10.1016/j.expthermflusci.2007.01.006
  10. Olsson, M. and Kjallstrand, J. 2006. Emissions from burning of softwood pellets, Biomass Bioenerg. 27: 607-611 https://doi.org/10.1016/j.biombioe.2003.08.018
  11. Olsson, M. 2006. Wheat straw and peat for fuel pelletsorganic compounds from combustion, Biomass Bioenerg. 30: 555-564 https://doi.org/10.1016/j.biombioe.2006.01.005
  12. Ruyter, H.P. 1982. Coalification model, Fuel. 61: 1182-1187 https://doi.org/10.1016/0016-2361(82)90017-5
  13. Sivapalan, K., M.N.M. Yunus, K. Sopian, A.H. Samsuddin and Rahman, R.A. 2003. Modeling the heating value of municipal solid waste, Fuel. 82: 1119-1125 https://doi.org/10.1016/S0016-2361(03)00009-7
  14. Sjostrom, E. 1993. Wood Chemistry-fundamentals and application. Academic Press, San Die해, U.S.A. pp. 70-72
  15. Tappi Standard, T222 om-88, 1989. Acid-insoluble lignin in wood and pulp, In: TAPPI test methods. TAPPI PRESS. Atlanta. USA
  16. Thy, P., Jenkins, B. M., Lesher, C.E, and Grundvig, S. 2005. Compositional constraints on slag formation and potassium volatilization from straw blended wood fuel, Fuel Process. Technol. 87(5): 383-406 https://doi.org/10.1016/j.fuproc.2005.08.015
  17. Van der Werf, H.M.G., E.W.J.M. Mathijssen and A.J, Haverkort. 1996. The potential of hemp(Cannabis sativa L.) for sustainable fibre production: a crop physiological appraisal. Annals of Applied Biology. 129: 109-123 https://doi.org/10.1111/j.1744-7348.1996.tb05736.x
  18. Wolf, A., A. Vidlund, and Andersson, E. 2006. Energy-efficient pellet production in the forest industry - a study of obstacles and success factors, Biomass Bioenerg. 30: 38-45 https://doi.org/10.1016/j.biombioe.2005.09.003
  19. 권성민, 조재현, 이성재, 권구중, 황병호, 이귀현, 한규성, 차두송, 김남훈. 2007. 산불 피해 소나무재의 목질 펠릿으로의 이용 가능성 평가, 목재공학. 35(4): 14-20
  20. 농림부. 2003. 농림업 주요 통계
  21. 한규성, 여진기. 2003. 고밀화에 의한 현사시 톱밥의 고형연료화, 임산에너지. 220(2): 54-59
  22. 한규성, 최돈하. 2002. 포플러로부터 고밀화 연료의 제조, 임산에너지. 21(3): 59-65