DOI QR코드

DOI QR Code

Effect of Aluminum Addition on Porosity and Flexural Strength of Porous Self-Bonded Silicon Carbide Ceramics

알루미늄 첨가가 다공질 Self-Bonded SiC 세라믹스의 기공률과 꺾임강도에 미치는 영향

  • Lim, Kwang-Young (Department of Materials Science and Engineering, the University of Seoul) ;
  • Kim, Young-Wook (Department of Materials Science and Engineering, the University of Seoul) ;
  • Woo, Sang-Kuk (Energy Materials Research Center, Korea Institute of Energy Research) ;
  • Han, In-Sub (Energy Materials Research Center, Korea Institute of Energy Research)
  • 임광영 (서울시립대학교 신소재공학과) ;
  • 김영욱 (서울시립대학교 신소재공학과) ;
  • 우상국 (한국에너지기술연구원 에너지재료연구센터) ;
  • 한인섭 (한국에너지기술연구원 에너지재료연구센터)
  • Published : 2009.09.30

Abstract

Porous self-bonded silicon carbide (SBSC) ceramics were fabricated at temperatures ranging from 1750 to $1850^{\circ}C$ using SiC, Si, C as starting materials and Al as an optional sintering additive. The effect of Al addition on the porosity and strength of the porous SBSC ceramics were investigated as functions of sintering temperature and Si:C ratio. The porosity increased with decreasing the Si:C ratio and increasing the sintering temperature. It was possible to fabricate SBSC ceramics with porosities ranging from 37% to 44% by adjusting the Si:C ratio and the sintering temperature. Addition of Al additive promoted densification and necking between SiC grains, resulting in improved strength. Typical flexural strengths of SBSC ceramics with and without Al addition were 44 MPa and 34MPa, respectively.

Keywords

References

  1. N. Keller, C. Pham-Huu, S. Roy, M. J. Ledoux, C. Estournes, and J. Guille, “Influence of the Preparation Conditions on the Synthesis of High Surface Area SiC for Use as a Heterogeneous Catalyst Support,” J. Mater. Sci., 34 3189-202 (1999) https://doi.org/10.1023/A:1004681806843
  2. S. S. Hwang and T. W. Kim, “Fabrication and Properties of Reaction Bonded SiC Hot Gas Filter Using Si Melt Infiltration Method(in Korean),” J. Kor. Ceram. Soc., 40 [9] 891-96 (2003) https://doi.org/10.4191/KCERS.2003.40.9.891
  3. S. H. Lee and Y.-W. Kim, “Processing of Cellular SiC Ceramics Using Polymer Microbeads,” J. Kor. Ceram. Soc., 43 [8] 458-62 (2006) https://doi.org/10.4191/KCERS.2006.43.8.458
  4. J. H. Eom, D. H. Jang, Y.-W. Kim, I. H. Song, and H. D. Kim, “Low Temperature Processing of Porous Silicon Carbide Ceramics by Carbothermal Reduction(in Korean),” J. Kor. Ceram. Soc., 43 [9] 552-57 (2006) https://doi.org/10.4191/KCERS.2006.43.9.552
  5. S. H. Yun, P. N. Tan, Y. D. Kim, and S. W. Park, “Effects of Amounts of Carbon Source and Infiltrated Si on the Porosity and Fracture Strength of Porous Reaction Bonded SiC(in Korean),” J. Kor. Ceram. Soc., 44 [7] 381-86 (2007) https://doi.org/10.4191/KCERS.2007.44.7.381
  6. J. J. Kyung, J. J. Kim, S. R. Kim, W. T. Kwon, K. Y. Cho, and Y. H. Kim, “Preparation of Characterization of SiC Coated Graphite Foam(in Korean),” J. Kor. Ceram. Soc., 44 [11] 622-26 (2007) https://doi.org/10.4191/KCERS.2007.44.1.622
  7. S. H. Kim, Y.-W, Kim, J. Y. Yun, and H. D. Kim, “Fabrication of Porous SiC Ceramics by Partial Sintering and their Properties( in Korean),” J. Kor. Ceram. Soc., 41 [7] 541-47 (2004) https://doi.org/10.4191/KCERS.2004.41.7.541
  8. V. Z. Stavric and M. Hue, “Rekristallisiertes Siliziumkarbid,” Keram. Zeit., 27 [3] 125-28 (1975)
  9. X. Yao, S. Tan, X. Zhang, Z. Huang, and D. Jiang, “Low- Temperature Sintering of SiC Reticulated Porous Ceramics with $MgO-Al_2O_3-SiO_2$ Additives as Sintering Aids,” J. Mater. Sci., 42 4960-66 (2007) https://doi.org/10.1007/s10853-006-0473-1
  10. K. S. Seo, S. W. Park, and H. B. Kwon, “Fabrication of Porous RBSC by Si Melt Infiltration(in Korean),” J. Kor. Ceram. Soc., 37 [11] 1119-25 (2000)
  11. J. H. Eom, Y.-W. Kim, I. H. Song, and H. D. Kim, “Processing and Properties of Polysiloxane-Derived Porous Silicon Carbide Ceramics Using Hollow Microspheres as Templates,” J. Europ. Ceram. Soc., 28 1029-35 (2008) https://doi.org/10.1016/j.jeurceramsoc.2007.09.009
  12. Y.-W. Kim, J. H. Eom, C. Wang, and C. B. Park, “Processing of Porous Silicon Carbide Ceramics from Carbon- Filled Polysiloxane by Extrusion and Carbothermal Reduction,” J. Am. Ceram. Soc., 91 [4] 1361-64 (2008) https://doi.org/10.1111/j.1551-2916.2008.02280.x
  13. K. Y. Lim, Y.-W. Kim, S. K. Woo, and I. S. Han, “Effect of Si:C Ratio on Porosity and Flexural Strength of Porous Self- Bonded Silicon Carbide Ceramics(in Korean),” J. Kor. Ceram. Soc., 45 [5] 285-89 (2008) https://doi.org/10.4191/KCERS.2008.45.5.285
  14. K. Y. Lim, Y.-W. Kim, S. K. Woo, and I. S. Han, “Effect of Carbon Source on Porosity and Flexural Strength of Porous Self-Bonded Silicon Carbide Ceramics(in Korean),” J. Kor. Ceram. Soc., 45 [7] 430-37 (2008) https://doi.org/10.4191/KCERS.2008.45.7.430
  15. S. Prochazka, “The Role of Boron and Carbon in the Sintering of Silicon Carbide,” in “Special Ceramic 6,” British Ceram. Res. Ass., 171-81 (1975)
  16. S. Prochazka and R. M. Scanlan, “Effect of Boron and Carbon on Sintering of SiC,” J. Am. Ceram. Soc., 58 [1-2] 72 (1975) https://doi.org/10.1111/j.1151-2916.1975.tb18990.x
  17. R. A. Alliegro, L. B. Coffin, and J. R. Tinklepaugh, “Pressure Sintered Silicon Carbide,” J. Am. Ceram. Soc., 39 386-89 (1956) https://doi.org/10.1111/j.1151-2916.1956.tb15609.x
  18. S. Honda, T. Nagano, K. Kaneko, and H. Kodama, “Compressive Deformation Behavior of Al-doped $\beta$-SiC at Elevated Temperature,” J. Europ. Ceram. Soc., 22 979-85 (2002) https://doi.org/10.1016/S0955-2219(01)00406-X
  19. J. H. Eom, Y.-W. Kim, I. H. Song, and H. D. Kim, “Microstructure and Properties of Porous Silicon Carbide Ceramics Fabricated by Carbothermal Reduction and Subsequent Sintering Process,” Mater. Sci. Eng. A, 464 129-34 (2007) https://doi.org/10.1016/j.msea.2007.03.076

Cited by

  1. Flexural Strength of Macroporous Silicon Carbide Ceramics vol.48, pp.5, 2011, https://doi.org/10.4191/kcers.2011.48.5.360