DOI QR코드

DOI QR Code

Purification and Biological Characterization of Wild-type and Mutants of a Levan Fructotransferase from Microbacterium sp. AL-210

Microbacterium sp. A-210이 생성하는 Levan fructotransferase의 정제 및 생물학적 특성에 관한 연구

  • Hwang, Eun-Young (Department of Molecular Biology, College of Natural Sciences, Pusan National University) ;
  • Jeong, Mi-Suk (Department of Molecular Biology, College of Natural Sciences, Pusan National University) ;
  • Cha, Jae-Ho (Department of Microbiology, College of Natural Sciences, Pusan National University) ;
  • Jang, Se-Bok (Department of Molecular Biology, College of Natural Sciences, Pusan National University)
  • 황은영 (부산대학교 자연과학대학 분자생물학과) ;
  • 정미숙 (부산대학교 자연과학대학 분자생물학과) ;
  • 차재호 (부산대학교 자연과학대학 미생물학과) ;
  • 장세복 (부산대학교 자연과학대학 분자생물학과)
  • Published : 2009.09.30

Abstract

Difractose anhydrides (DFAs) is studied as a sweetener for diabetics because of its structural property. DFAs have four types: DFA I, III, IV (degradation of levan) and V (degradation of inulin). Especially, DFA IV has been shown to enhance the absorption of calcium in experiments using rats. Levan fructotransferase is an enzyme for producing di-d-fructose-2,6':6,2-dianhydride (DFA IV). To identify structural characterization, we purified wild-type and mutants (D63A, D195N and N85S) of levan fructotransferase (LFTase) from Microbacterium sp. AL-210. These proteins were purified to apparent homogeneity by Ni-NTA affinity column, Q-sepharose ion exchange and gel filtration chromatography and detected by SDS-PAGE. They were also analyzed by circular dichroism (CD) measurements, JNET secondary structure prediction, activity measurements at various temperatures, and pH analysis. The optimum pH for the enzyme-catalyzed reaction was pH 7.5 and optimum temperature was observed at $55^{\circ}C$. Along with wild-type LFTase, mutants were analyzed by CD measurement, fluorescence analysis and differential scanning calorimetry (DSC). N85S showed less $\alpha$-helix and more $\beta$ strand than others. Also, N85S showed almost the same curve as wild-type in their steady-state fluorescence spectra, whereas mutant D63A and D195N showed higher intensity than wild-type. The amino acid sequence of wild-type LFTase was compared to the sequences of exo-inulinase from Aspergillus awamori, a plant fructan 1-exohydrolase from Cichorium intybus, and Thermotogo maritime (Tm) invertase and showed a high identity with Exo-inulinase from Aspergillus awamori.

DFA (Difructose anhydride)는 특유의 구조적인 안정성 때문에 당뇨병 환자를 위한 당원으로써 적합하다는 연구가 보고 되어 있다. DFA에는 4가지 type이 있는데 inulin에 의한 DFA I DFA III DFAV가 있고 levan에 의한 DFA IV가 있는 것으로 알려져 있다. 특히 DFA IV는 당뇨병 환자를 위한 당원 뿐 만 아니라 rat을 이용한 연구에서 칼슘의 흡수를 도와 준다는 보고가 있었다. 이러한 DFAIV를 생성하는 데 쓰이는 Microbacterium sp. AL-210에서 유래한 LFTase (Levan fructotransferase)의 wild-type과 mutants (D63A, D195N, N85S)의 구조적 특성을 밝히기 위해 정제하였다. LFTase의 wild-type과 mutants들을 대량 발현시킨 후 흡착 크로마토그래피, 이온교환 크로마토그래피 그리고 젤 여과 크로마토그래피를 이용하여 고순도로 분리 정제하였으며 이를 SDS-PAGE를 통하여 확인하였다. 분리 정제된 단백질을 JNET 이차 구조 예측 프로그램, solubility 측정, CD (원 편광 이색성 분광편광계), fluorescence spectroscopy (형광분석법), DSC (시차주사열량계)를 이용하여 분석하였다. 또한 다중 정렬과 2차 구조 예측 프로그램을 이용하여 wild-type의 2차 구조를 분석하였다. Solubility 측정에서 가장 적합한 온도는 $55^{\circ}C$, 최상의 pH는 7.5로 나타났다. CD 분석에서 wild-type과 비교한 결과 다른 mutant에 비해 N85S의 $\alpha$-helix가 많이 감소한 것과 $\beta$ strand와 random coil이 증가한 것을 확인하였다. 또한 DSC 분석을 통해 wild-type이 다른 mutants에 비해 안정적인 구조를 지닌 것을 확인하였다. 형광분석에서 N85S가 wild-type과 가장 유사하게 나타났으며 D63A와 D195N은 wild-type에 비해 높은 강도를 나타내었다. 또한 wild-type의 sequence를 Exo-inulinase from Aspegillus awamori, a plant fructan 1-exohydrolase from Cichorium intybus 그리고 invertase from Thermotogo maritime (Tm)의 sequence와 다중 정렬한 결과 Exo-inulinase와 높은 identity를 보였다.

Keywords

References

  1. Alberto, F., E. Jordi, B. Henrissat, and M. Czjzek. 2006. Crystal structure of inactivated Thermotoga maritima invertase in complex with the trisaccharide substrate raffinose. Biochem. J. 395, 457-462 https://doi.org/10.1042/BJ20051936
  2. Cha, J., N. H. Park, S. J. Yang, and T. H. Lee. 2001. Molecular and enzymatic characterization of a levan fructotransferase from Microbacterium sp. AL-210. J. Biotechnol. 91, 49-61 https://doi.org/10.1016/S0168-1656(01)00288-7
  3. Dharker, P. N., S. H. Gaikwad, C. G. Suresh, V. Dhuna, M. I. Khan, J. Singh, and S. S. Kamboj. 2009. Comparative studies of two araceous lectins by steady state and time-resolved fluorescence and CD spectroscopy. J. Fluoresc. 19, 239-248 https://doi.org/10.1007/s10895-008-0409-z
  4. Han, Y. W. and M. A. Clarke. 1990. Production and characterization of microbial levan. J. Agric. Food Chem. 38, 393-396 https://doi.org/10.1021/jf00092a011
  5. Kojima, I., T. Saito, M. lizuka, N. Minamiura, and S. Ono. 1993. Characterization of levan produced by Serratia sp. J. Ferment. Bioeng. 75, 9-12 https://doi.org/10.1016/0922-338X(93)90169-9
  6. Kokona, B., D. J. Rigotti, A. S. Wasson, S. H. Lawrence, E. K. Jaffe, and R. Fairman. 2008. Probing the oligomeric assemblies of Pea porphobilinogen synthase by analytical ultracentrifugation. Biochemistry (N. Y.) 47, 10649-10656 https://doi.org/10.1021/bi801128d
  7. Liu, Z., G. Ramanoudjame, D. Liu, R. O. Fox, V. Jayaraman, M. Kurnikova, and M., Cascio. 2008. Overexpression and functional characterization of the extracellular domain of the human alpha1 glycine receptor. Biochemistry 47, 9803-9810 https://doi.org/10.1021/bi800659x
  8. Mineo, H, H Hara, H Kikuchi, H Sakurai, and F. Tomita. 2001. Various indigestible saccharides enhance Net calcium transport from the epithelium of the small and large intestine of rats in vitro. J. Nutr. 131, 3243-3246
  9. Mitamura, R, H. Hara, Y. Aoyama, and H Chiji. 2002. Supplemental feeding of difructose anhydride III restores calcium absorption impaired by ovariectomy in rats. J. Nutr. 132, 3387-3393
  10. Moon, K, K Choi, H Kang, J. Oh, S. B. Jang, c. Park, J. Lee, and J. Chao 2008. Probing the critical residues for intramolecular fructosyl transfer reaction of a levan fructotransferase. J. Microbiol. Biotechnol. 18, 1064-1069
  11. Nagem, R, A. Rojas, A. Golubev, O. Korneeva, E. Eneyskaya, and A. Kulminskaya. 2004. Crystal Structure of Exo-inulinase from Aspergillus awamori: The Enzyme Fold and Structural Determinants of Substrate Recognition. J. Mol. Biol. 344, 471-480 https://doi.org/10.1016/j.jmb.2004.09.024
  12. Park, L S. Kim, and Y. Choi. 1996. Some physical and physiological properties of difructofuranose dianhydride (DF A III), a new sweetener. Kor. J. Appl. Microbiol. Biotechnol. 24, 619-623
  13. Rees, D. 1966. Sucrose Utilization by Zymomonas mobilis: formation of a Levan. Biochem. J. 98, 804-812
  14. Saito, K., H. Goto, A. Yokota, and F. Tomita. 1997. Purification of Levan fructotransferase from arthrobacter nicotinovorans GS-9 and production of DFA IV from Levan by the enzyme. Biosci. Biotechnol. Biochem. 61, 1705-1709 https://doi.org/10.1271/bbb.61.1705
  15. Saito, K, T. Hira, T., Suzuki, H Hara, A. Yokata, and F. Tomita. 1999. Effects of DFA IV in rats: calcium absorption and metabolism of DF A IV by intestinal microorganisms. Biosci. Biotechnol. Biochem. 63, 655-661 https://doi.org/10.1271/bbb.63.655
  16. Saito, K and F. Tomita. 2000. Difructose anhydrides: their mass-production and physiological functions. Biosci. Biotechnol. Biochem. 64, 1321-1327 https://doi.org/10.1271/bbb.64.1321
  17. Song, K B., K S. Bae, Y. B. Lee, K Y. Lee, and S. K Rhee. 2000. Characteristics of levan fructotransferase from Arthrobacter ureafaciens K2032 and difructose anhydride IV formation from levan. Enzyme Microb. Technol. 27, 212-218 https://doi.org/10.1016/S0141-0229(00)00135-6
  18. Suzuki, T., H Hara, T. Kasai, and F. Tomita. 1998. Effects of difructose anhydride III on calcium absorption in small and large intestines of rats. Biosci. Biotechnol. Biochem. 62, 837-841 https://doi.org/10.1271/bbb.62.837
  19. Tanaka, K, T. Karigane, F. Yamaguchi, S. Nishikawa, and N. Yoshida. 1983. Action of Levan fructotransferase of Arthrobacter ureafaciens on Levanoligosaccharides. J. Biochem. 94, 1569-1578
  20. Tanaka, K, T. Uchiyama, K Yamauchi, Y. Suzuki, and S. Hashinguchi. 1982. Formation of a Di-D-fructose dianhydride From Levan by Arthrobacter ureafaciens. Carbohydr. Res. 99, 197-204 https://doi.org/10.1016/S0008-6215(00)81911-4
  21. Tang, C. 2008. Thermal denaturation and gelation of vicilin-rich protein isolates from three Phaseolus legumes: A comparative study. LWI - Food Science and Technology 41, 1380-1388 https://doi.org/10.1016/j.lwt.2007.08.025
  22. Verhaest, M., W. V. Ende, K 1. Roy, C. J. De Ranter, A. V. Laere, and A. Rabijns. 2005. X-ray diffraction structure of a plant glycosyl hydrolase family 32 protein: fructan 1-exohydrolase IIa of Cichorium intybus. The Plant Journal 41, 400-411 https://doi.org/10.1111/j.1365-313X.2004.02304.x