DOI QR코드

DOI QR Code

Shell Finite Element of Reinforced Concrete for Internal Pressure Analysis of Nuclear Containment Building

격납건물 내압해석을 위한 철근콘크리트 쉘 유한요소

  • Received : 2007.02.21
  • Accepted : 2009.07.08
  • Published : 2009.11.30

Abstract

A 9-node degenerated shell finite element(FE), which has been developed for assessment of ultimate pressure capacity and nonlinear analysis for nuclear containment building is described in this paper. Reissner-Midnlin(RM) assumptions are adopted to develop the shell FE so that transverse shear deformation effects is considered. Material model for concrete prior to cracking is constructed based on the equivalent stress-equivalent strain relationship. Tension stiffening model, shear transfer mechanism and compressive strength reduction model are used to model the material behavior of concrete after cracking. Niwa and Aoyagi-Yamada failure criteria have been adapted to find initial cracking point in compression-tension and tension-tension region, respectively. Finally, the performance of the developed program is tested and demonstrated with several examples. From the numerical tests, the present results show a good agreement with experimental data or other numerical results.

이 논문은 원전 격납건물의 극한내압능력 평가와 비선형해석을 수행하기 위하여 개발된 해석프로그램인 9절점 퇴화 쉘 유한요소에 대하여 기술하였다. 개발된 쉘 유한요소는 퇴화 고체기법과 구조물에서 발생하는 횡전단변형도를 고려하기 위하여 Reissner-Mindlin(RM)가정을 도입하였다. 콘크리트의 재료모델은 등가응력-등가변형률의 관계를 이용하여 콘크리트의 응력과 변형률의 수준을 결정하고, 콘크리트에 균열이 발생하면 부착응력을 고려하는 인장강성모델과 균열면에서의 전단전달 메카니즘 그리고 균열면에서 압축강도 감소모델 등으로 재료적 거동을 나타내었다. 또한 균열발생기준으로 압축-인장영역에는 Niwa가 제안한 응력포락선을 도입하였고, 인장-인장영역에는 Aoyagi-Yamada가 제안한 응력포락선을 사용하였다. 개발된 프로그램의 성능은 다양한 수치예제를 통하여 검증하였다. 검증예제 결과로부터 개발된 쉘 유한요소를 이용한 해석결과는 실험결과 또는 다른 해석결과와 유사한 결과를 도출하였다.

Keywords

References

  1. 이상진, 이홍표, 서정문(2002) 철근콘크리트 격납건물의 비선형해석을 위한 유한요소 해석프로그램 NUCAS, 한국원자력연구소, KAERI/TR-2076/2002.
  2. 이상근, 조명석, 송영철(2001) 콘크리트 이축 응력시험, 전력연구원 과기부 수탁과제 2차년도 보고서, TM.99NE02.P2001.178.
  3. 이홍표, 전영선, 서정문, 신재철(2004) 이축 인장하중을 받는 원전 격납건물 벽체패널의 비선형 유한요소해석, 대한토목학회논문집, 대한토목학회, 제24권, 제6A호, pp. 1333-1343.
  4. 이홍표, 전영선, 최인길, 서정문(2004) 프리스트레스 콘크리트 격납건물 1/4 축소모델의 비선형해석에 대한 연구, 한국원자력연구소, KAERI/TR-2740/2004.
  5. 현대건설기술연구소(2001) 프리스트레스 콘크리트 격납건물 부재실험, 한국원자력연구소 위탁연구보고서, KAERI/CM-493.
  6. 岡村甫, 前川宏一 (1991) 鐵筋コンクリ一トの非線形解析と構成則,技報堂出版.
  7. Abaqus (2007) Standard User's manual(Ver.678), Dassault Systemes Simulia, Inc..
  8. Ahmad, S., Irons, B.M., and Zienkiewicz, O.C. (1970) Analysis of thick and thin shell structures by curved finite elements, International International Journal for Numerical Methods in Engineering, Vol. 2, pp. 419-451. https://doi.org/10.1002/nme.1620020310
  9. Aoyagi, Y. and Yamada, K. (1984) Strength and deformation characteristics of RC shell elements subjected to in-plane forces, Concrete Library International JSCE, No. 4, pp. 129-160.
  10. Arrea, M. and Ingraffea, A.R. (1982) Mixed-mode crack propagation in mortar and concrete, Report 81-13, Cornell University,New York, USA.
  11. Cervenka, V. and Gerstle, K.H. (1971) Inelastic analysis of reinforced concrete panels, Part I: Theory, International Association of Bridge and Structural Engineers Publications, Vol. 31, pp. 31-45.
  12. Chan, E.C. (1983) Nonlinear geometric, material and time dependent analysis of reinforced concrete shells with edge beams,Ph.D. Dissertation, UC Berkeley, SESM Report No. 82-8.
  13. Clauss, D.B. (1989) Round robin analysis of the behavior of a 1:6 scale reinforced concrete containment model pressurized to failure:posttest evaluations, SNL, SAND89-0349, NUREG/ CR-5341.
  14. Dameron, R.A., Rashid, Y.R., and Sullaway, M.F. (1998) Pretest prediction analysis and posttest corelation of the Sizewell-B 1:10 scale prestressed concrete containment model test, SNL, SAND90-7117, NUREG/CR-5671.
  15. Dvorkin, E.N. and Bathe, K.J. (1984) A continuum mechanics based on four-node shell element for general nonlinear analysis,Engineering Computations, Vol. 1, pp. 77-88. https://doi.org/10.1108/eb023562
  16. Hedgren, A.W. and Billington, D.P. (1967) Mortar model test on a cylindrical shell of varying curvature and thickness, Journal of the American Concrete Institute, Vol. 64, No. 2, pp. 73-83.
  17. Lin, C.H. and Scordelis, A.C. (1975) Finite element study of a reinforced concrete cylindrical shell through elastic, cracking, and ultimate rangeds, ACI Journal, Vol. 72, No. 11, pp. 628-633.
  18. Jofreit, J.C. and McNeice, G.M. (1971) Finite element analysis of reinforced concrete slabs, ASCE, Vol. 97, ST3, pp. 785-806.
  19. Niwa, K. (1980) The structural characteristic of reinforced concrete panel, Msc. thesis, Department of civil engineering, University of Tokyo.
  20. Owen, D.R.J. and Figueiras, J.A. (1984) Ultimate load analysis of reinforced concrete plates and shells including geometric nonlinear effect in the finite element software for plates and shells, Pineridge Press, Swansea.
  21. Reissner, E. (1945) The effect of transverse shear deformation on the bending of elastic plate, ASME, Journal of Applied Mechanics, Vol. 12, pp. 69-77.
  22. Sandia National Laboratories (1997) PCCV round robin analysis.
  23. Schlangen, E. (1993) Experimental and numerical analysis of fracture processes in concrete, Dissertation, Delft University of Technology, Netherlands.
  24. Stolaski, H. and Belytscho, T. (1983) Shear and membrane locking in curved $C^0 $element, Computer Methods in Applied Mechanics and Engineering, Vol. 49, pp. 279-296.
  25. Taylor, R.L. (1999) FEAP-A finite element analysis program, Version 7.1, User Manual.
  26. Vecchio, F.J. and Collins, M.P. (1982) The response of reinforced concrete to in-plane shear and normal stress, Report No. 82-03, Department of Civil Engineering, University of Toronto,Canada.