DOI QR코드

DOI QR Code

Behavior Analysis of Concrete Structure under Blast Loading : (I) Experiment Procedures

폭발하중을 받는 콘크리트 구조물의 실험적 거동분석 : (I) 실험수행절차

  • 이나현 (연세대학교 토목공학과) ;
  • 김성배 (연세대학교 토목공학과) ;
  • 김장호 (연세대학교 사회환경시스템공학부) ;
  • 최종권 (현대건설(주) 기술연구소 재료팀)
  • Received : 2009.07.24
  • Accepted : 2009.08.13
  • Published : 2009.09.30

Abstract

In recent years, there have been numerous explosion-related accidents due to military and terrorist activities. Such incidents caused not only damages to structures but also human casualties, especially in urban areas. To protect structures and save human lives against explosion accidents, better understanding of the explosion effect on structures is needed. In an explosion, the blast overpressure is applied to concrete structures as an impulsive load of extremely short duration with very high pressure and heat. Generally, concrete is known to have a relatively high blast resistance compared to other construction materials. However, information and test results related to the blast experiment of internal and external have been limited due to military and national security reasons. Therefore, in this paper, to evaluate blast effect on reinforced have concrete structure and its protective performance, blast tests are carried out with $1.0m{\times}1.0m{\times}150mm$ reinforce concrete slab structure at the Agency for Defence Development. The standoff blast distance is 1.5 m and the preliminary tests consists with TNT 9 lbs and TNT 35 lbs and the main tests used ANFO 35 lbs. It is the first ever blast experiment for nonmilitary purposes domestically. In this paper, based on the basic experiment procedure and measurement details for acquiring structural behavior data, the blast experimental measurement system and procedure are established details. The procedure of blast experiments are based on the established measurement system which consists of sensor, signal conditioner, DAQ system, software. It can be used as basic research references for related research areas, which include protective design and effective behavior measurements of structure under blast loading.

최근, 테러 및 전쟁과 관련된 폭발사고가 빈번히 발생하고 있으며, 특히 도심지에서는 이러한 폭발사고로 인해 인명피해 뿐 아니라 주요 시설물에도 큰 손상이 가해져 제2차, 3차의 피해가 발생하게 된다. 폭발사고에 대하여 인명 및 시설물을 안전하게 보호하기 위해서는 기본적으로 구조물에 가해지는 폭발하중 효과에 대한 이해가 필요하다. 폭발하중은 매우 빠른 시간 내에 콘크리트 구조물에 큰 압력으로 작용하는 하중이므로 변형률 속도와 구조물의 국부적인 손상을 고려하여 동적응답을 평가해야 한다. 일반적으로, 콘크리트는 다른 건설재료에 비해 상대적으로 높은 폭발저항성을 가진 재료로 알려져 있다. 그러나 폭발실험이라는 특수한 실험조건으로 인하여 국내외적으로 실험에 관련된 정보 및 결과 공유가 상당히 제한적으로 이뤄지고 있는 실정이다. 그러므로 본 논문에서는 폭발에 의한 압력하중이 철근콘크리트 구조물에 미치는 영향과 방호성능을 평가하기 위하여 국방과학시험연구소 다락대 시험장에서 $1.0m{\times}1.0m{\times}150mm$의 철근콘크리트 슬래브 구조물을 제작하여 시편으로부터 높이 1.5 m에서 TNT 9 lbs와 TNT 35 lbs으로 예비시험을 수행하였으며, 동일한 이격거리(standoff)에서 ANFO 35 lbs으로 본 실험을 수행하였다. 이는 국내 최초 민간에서 수행되어진 실험으로써, 첫 번째 논문에서는 폭발실험을 하기 위한 기본적인 실험 구성 및 구조물의 거동을 측정하기 위한 계측장비 구성에 대하여 검토하여 계측 시스템의 구축 및 폭파시험 수행절차를 구축하고자 한다. 센서, 시그널 컨디셔너, DAQ시스템, 소프트웨어로 구축된 계측 시스템을 바탕으로 정립된 폭파시험 수행절차는 향후 국내의 방호설계 및 폭발하중을 받는 구조물의 효과적인 거동계측 등 관련 연구분야의 기초자료가 될 것이라고 판단되는 바이다.

Keywords

References

  1. 김호진, 남진원, 김성배, 이우철, 변근주(2007) 폭발하중을 받는 콘크리트 벽체 구조물의 보강성능에 대한 해석적 분석, 한국콘크리트학회 논문집, 한국콘크리트학회, 제19권 제2호, pp. 241-250. https://doi.org/10.4334/JKCI.2007.19.2.241
  2. 남진원, 김호진, 김성배, 변근주(2007) 폭발하중을 받는 콘크리트 벽체구조의 해석기법, 대한토목학회논문집, 대한토목학회, 제27권 제3A호, pp. 433-442.
  3. 서관세(2005) 방호공학, 청문각.
  4. ASCE Committee on Dynamic effect of the Structural Division (1985) Design of Structures to Resist Nuclear Weapons effect, American Society of Civil Engineers, Manuals and Reports on Engineering Practice-No. 42.
  5. ASCE (1999) Structural Design for Physical Security: State of the Practice Report, Task Committee on Physical Security, American Society of Civil Engineers, New York.
  6. ASCE Task Committee on Blast Resistant Design on the Petrochemical Committee (1997) Design of Blast Resistant Buildings in Petrochemical Facilities, Reston, VA, 5.19-5.22.
  7. Baker, W.E. (1973) Explosions in Air, Wilfred Baker Engineering, San Antonio.
  8. Biggs, J.M. (1964) Introduction to Structural Dynamics, McGraw-Hill, New York, pp. 3-26.
  9. Byun, K.J., Nam, J.W., Kim, H.J., and Choi, H.J. (2006) Evaluation of the Blast Resistance of Concrete Shelter Structure, Proceeding of 2nd International Conference on Design and Analysis of Protective Structures, Singapore, pp. 78-85.
  10. Choi, H.J. and Krauthammer, T. (2003) Investigation of Progressive Collapse Phenomena in a Multi Story Building, 11th International Symposium on Interaction of Effects of Munitions with Structures, Mannheim, Germany.
  11. DTRA/TSWG Program (1999) Blast Mitigation for Structure, Status Report, Commission on Engineering and Technical Systems, National Research Council, National Academy Press, Washington, DC, USA.
  12. Figliola, R.S. and Beasley, D.E. (2005) Theory and Design for Mechanical Measurements, 4th Edition, Wiley.
  13. Hyde, D.W. (1992) Fundamental of Protective Design for Conventional Weapons, CONWEP (Conventional Weapons Effects), TM5-8511-1, United States Army Waterway Experiment Station, Vicksburg, Miss.
  14. Kingery, C.N. and Bulmash, G. (1982) Airblast Parameters from TNT Spherical Air Burst and Hemispherical Surface Burst, Technical Report (ARBRL-TR-02555), U.S. Army ARDCBRL, Aberdeen Proving Ground, MD.
  15. Krauthammer, T. (2007) Modern Protective Structures, CRC Press.
  16. Mosalam, K.M. and Mosallam, A.S.(2001) Nonlinear transient analysis of reinforced concrete slabs subjected to blast loading and retrofitted with CFRP composites, Composite Part B : engineering, Vol. 32, pp. 623-636. https://doi.org/10.1016/S1359-8368(01)00044-0
  17. Razaqpur, A.G., Tolba, A., and Contestabile, E. (2007) Blast loading response of reinforced concrete panels reinforced with externally bonded GFRP laminates, Composite Part B : engineering, Vol. 38, pp. 535-546. https://doi.org/10.1016/j.compositesb.2006.06.016
  18. TM5-1300/AFR 88-2/NAVFAC P-39 (1990) Structures to Resist the Effects of Accidental Explosions, Joint Departments of the Army, Air Force and Navy Washington, DC.
  19. TM5-855-1/AFPAM32-1147/NAVFACP-1080/DAHSCWEMAN-97 (1997) Design and Analysis of Hardened Structures to Conventional Weapons Effects, Joint Departments of the Army, Air Force, Navy and the Defense Special Weapons Agency, Washington, DC.
  20. Winget. D.G., Marchand, K.A., and Williamson, E.B. (2005) Analysis and design of critical bridges subjected to blast loads, journal of structural engineering, Journal of Structural Engineering, ASCE, Vol. 131, No. 8, pp. 1243-1255. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:8(1243)
  21. Yi, N.H., Nam, J.W., Kim, S.B., Kim, J.J.H., and Byun, K.J. (2008) HFPB Analysis of RC structures under blast loads considering concrete damage model, The 3rd ACF International Conference ACF/VCA-2008, HoChiMinh,Vietam, pp. 796-804.