DOI QR코드

DOI QR Code

Assessment of Climate Chanage Effect on Temperature and Drought in Seoul : Based on the AR4 SRES A2 Senario

기후변화가 서울지역의 기온 및 가뭄에 미치는 영향 평가 : AR4 SRES A2 시나리오를 기반으로

  • 경민수 (인하대학교 사회기반시스템공학부) ;
  • 이용원 (인하대학교 사회기반시스템공학부) ;
  • 김형수 (인하대학교 사회기반시스템공학부) ;
  • 김병식 (한국건설기술연구원 수자원연구실)
  • Received : 2009.01.20
  • Accepted : 2009.03.05
  • Published : 2009.03.31

Abstract

This study suggests the assessment technique for climate change effect on drought in Korea based on the AR4 SRES A2 scenario reported in IPCC fourth assessment report in 2007. IPCC provides monthly outputs of 24 climate models through the DDC. One of the models is BCM2 model which was developed at BCCR in Norway and NCEP data is used for downscaling. The K-NN(K-Nearest Neighbor) and ANN(Artificial Neural Network) are selected as downscaling technique to downscale the temperature and precipitation at Seoul station in Korea. K-NN could downscale both temperature and precipitation well. ANN made a good result for temperature, but it gave a divergence result in precipitation. Finally, SPI of Seoul station is computed to evaluate the effect of climate change on drought. BCM2 predicted that temperature will increase and drought severity will increase because of the increased drought spell at Seoul station.

본 연구에서는 2007년 IPCC AR4와 함께 제시된 SRES A2 시나리오를 이용해서 기후변화가 한반도 가뭄에 미치는 영향을 평가하기 위한 방안을 제시하고자 한다. IPCC는 DDC를 통해서 총 24개의 기후모형의 결과를 월 단위로제공하고 있다. 이 중 노르웨이 BCCR의 BCM2 모형과 NCEP 자료를 이용하여 최근린법(K-NN)과 인공신경망(Artificial Neural Network)이론을 적용함으로써, 온도와 강수량을 기상청 산하 서울지점으로 축소하였다. 최근린법의 경우, 온도와 강수량 모두를 축소하는 것이 가능하였지만, 인공신경망이론을 적용하여 축소할 경우, 온도는 비교적 잘 축소하였으나 강수량의 경우는 발산하는 결과를 보였다. 마지막으로 기후변화가 가뭄에 미치는 영향을 평가하기 위해서 최근린법으로부터 축소된 월 단위 강수량을 이용하여 서울지점의 표준강수지수를 산정하였다. BCM2 모형에 의하면 서울지점의 경우, 미래에는 전반적으로 온도가 증가하고 가뭄의 지속기간이 길어짐에 따라 가뭄이 더욱더 심각하게 된다는 결과를 예측하였다.

Keywords

References

  1. 경민수, 밸리시바쿠마르, 김형수, 김병식(2008) 카오스를 이용한 일 강우자료의 시간적 분해. 한국수자원학회 논문집, 한국수자원학회, 제41권, 제9호, pp. 959-967. https://doi.org/10.3741/JKWRA.2008.41.9.959
  2. 권현한, 문영일(2005) 상태-공간 모형과 Nearest Neighbor 방법을 통한 수문시계열 예측에 관한 연구. 대한토목학회 논문집, 대한토목학회, 제25권, 제4B호, pp. 275-283.
  3. 김병식(2005) 기후변화에 따른 유역의 수문요소 및 수자원 영향 평가. 박사학위논문, 인하대학교.
  4. 김병식, 김보경, 경민수, 김형수(2008) 기후변화가 극한강우와 I-D-F 분석에 미치는 영향 평가. 한국수자원학회 논문집, 한국수자원학회, 제41권, 제4호, pp. 379-394. https://doi.org/10.3741/JKWRA.2008.41.4.379
  5. 김형수, 최시중, 김중훈(1998) DVS 알고리즘을 이용한 일 유량자료의 예측, 대한토목학회 논문집, 대한토목학회, 제18권, 제II-6호, pp. 563-570.
  6. 류소라, 유철상(2004) 수정표준강수지수의 제안 및 적용, 한국수자원학회논문집, 한국수자원학회, 제37권, 제7호, pp. 553-567.
  7. Casdagli, M. (1992) Chaos and deterministic versus stochastic nonlinear modeling, Journal of the Royal Statistical society, Statistics in society, Series B 54, pp. 303-324.
  8. Casdagli, M. and Weigend, A. (1994) Exploring the Continuum Between Deterministic and Stochastic Modelling, Forecasting the Future and Understanding the Past, Eds. A.S. Weigned and N.A. Gershenfeld, SFI Studies in the Sciences of Complexity, Proc. Vol. XV, Addison-Wesley, pp. 993.
  9. Dubrovsky, M., Svoboda, M. D., Tranka, M., Hayes, M.J., Wilhite, D.A., Zalud, Z., and Hlavinka, P. (2008) Application of relative drought indice in assessing climate-change impacts on drought conditions in Czechia. Theoretical and Applied Climatology, in press.
  10. Durman, C.F., Gregory, J.M., Hassell, D.C., Jones, R.G., and Murphy, J.M. (2001) A comparison of extreme European daily precipitation simulated by a global and a regional climate model for present and future climates. Quarterly Journal of the Royal Meteorological Society, Royal Meteorological Society, Vol. 127, No. 573, pp. 1005-1015. https://doi.org/10.1002/qj.49712757316
  11. Fowler, H.J., Kilsby, C.G., and Stunell, J. (2007) Modeling the impacts of projected future climate change on water resources in north-west England. Hydrologic & Earth System Sciences, EGU, Vol. 11, No. 3, pp. 1115-1126. https://doi.org/10.5194/hess-11-1115-2007
  12. Guttman, N.B. (1999) Accepting the Standardized Precipitation Index. Journal of the American Water Resources Association, Vol. 35, No. 2, pp. 311-322. https://doi.org/10.1111/j.1752-1688.1999.tb03592.x
  13. Hamlet, A.F., Lettenmaier, D.P., and Snover, A. (2003) Climate change streamflow scenarios for critical period water planning studies:A technical methodology. Journal of Water Resources Planning and Management, ASCE, in review.
  14. Hashino, T., Bradley, A.A., and Schwartz, S.S. (2007) Evaluation of bias-correction methods for ensemble streamflow volume forecasts. Hydrology and Earth System Science, EGU, Vol. 11, pp. 939-950. https://doi.org/10.5194/hess-11-939-2007
  15. Kim B.S., Kim H.S., Seoh B.H. and Kim, N.W. (2007) Impact of climate change on water resources in Yongdam Dam Basin, Korea. Stochastic Environmental Research and Risk Assessment, Vol. 21, No. 4, pp. 355-373. https://doi.org/10.1007/s00477-006-0070-5
  16. McKee, T.B., Doesken, N.J., and Kleist, J. (1993) The relationship of drought frequency and duration to time scales. Preprints, 8th Conference on Applied Climatology, 17-22 January, Anaheim, California, pp. 179-184.
  17. Olsson, J., Uvo, C. B., Jinno, K., Kawamura, A., Nishiyama, K., Koreeda, N., Nakashima, T., and Morita, O. (2004) Neural networks for rainfall forecasting by atmospheric downscaling. Journal of hydrology Engineering, Vol. 9, No. 1, pp. 1-12. https://doi.org/10.1061/(ASCE)1084-0699(2004)9:1(1)
  18. Palmer, R., Wiley, M., and Kameenui, A. (2004) Will climate change impact water supply and demand in the puget sound?, Department of Civil and Environmental Engineering University of Washington, Seattle WA.
  19. Panofsy, H.A. and Brire, G.W. (1963) Some application of Statistics to Meteorology, Pennsylvania State University, University Park, Pennsylvania, pp. 224.
  20. Rosenblatt, F. (1962) Principles of Neurodynamics. Spartan. New York.
  21. Rumelhart, D.E., Hinton, G.E., and Williams, R.J. (1986) Learning internal representation by error propagation. in Rumlhart, D.E., McClelland, J. (Eds), Parallel Data Processing, MIT Press, Vol. 1, pp. 318-362.
  22. Semenov, M.A. and Barrow, E.M. (2002) LARS-WG : A Stochastic Weather Generator for use in climate impact studies, Vol. 30.
  23. Shivam, T. (2004) Downscaling of genral circulation models to assess the impact of climate change on rainfall of indian, ME Dissertation, Indian Institute of science, Bangalore, India.
  24. Sivakumar, B., Sorooshian, S., Gupta, H.V., and Gao, X. (2001) A chaotic approach to rainfall disaggregation. Water Resources Research, AGU, Vol. 37, No. 1, pp. 61-72. https://doi.org/10.1029/2000WR900196
  25. Solecki, W.D. and Oliveri, C. (2004) Downscaling climate change scenarios in an urban land use change models. Journal of environmental management, Vol. 72, No. 1-2, pp. 105-115. https://doi.org/10.1016/j.jenvman.2004.03.014
  26. Srinivas, V.V., Srinivasan, K. (2005) Matched block bootstrap for resampling multiseason hydrologic time series. Hydrological Process, Vol. 19, Issue 18, pp. 3659-3682. https://doi.org/10.1002/hyp.5849
  27. Stehlik, Jiri and Bardossy, Andras. (2002) Multivariate stochastic downscaling model for generating daily precipitation series based on atmospheric circulation. Journal of hydrology, Vol. 256, No. 1-2, pp. 120-141. https://doi.org/10.1016/S0022-1694(01)00529-7
  28. Tatli, H., Dalfes, H.N., and Mentes, S. (2004) A statistical downscaling method for monthly total precipitation over Tutkey. International journal of climatology, Royal Meteorological Society, Vol. 24, No. 2, pp. 161-180. https://doi.org/10.1002/joc.997
  29. Tripathia, S., Srinivasa, V.V., and Nanjundiahb, R.S. (2006) Downscaling of precipitation for climate change scenarios: A support vector machine approach. Journal of Hydrology, Vol. 330, Issues 3-4, pp. 621-640. https://doi.org/10.1016/j.jhydrol.2006.04.030
  30. Wetterhall, F., Halldin, S., and Xu, C.Y. (2005) Statistical precipitation downscaling in central Sweden with the analogue method. Journal of Hydrology, Vol. 306, No. 14, pp. 174-190. https://doi.org/10.1016/j.jhydrol.2004.09.008
  31. Wilby, R.L. and Dawson, C.W. (2007) SDSM 4.2 : A decision support tool for the assessment of regional climate change impacts Vol. 4.2.
  32. Wood, A.W., Leung, L.R., Sridhar. V., and Lettenmaier, D.P. (2004) Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change, Vol. 62, Issue 1-3, pp. 189-216. https://doi.org/10.1023/B:CLIM.0000013685.99609.9e
  33. Zhang, X.C. (2007) A comparison of explicit and implicit spatial downscaling of GCM output for soil erosion and crop production assessments. Climatic change, Vol. 84, No. 3-4, pp. 337-363. https://doi.org/10.1007/s10584-007-9256-1