DOI QR코드

DOI QR Code

Genetic Polymorphism of Microsatellite Markers in Panax ginseng C.A. Meyer

인삼 (Panax ginseng C.A. Meyer)의 Microsatellite 마커에 대한 유전적 다형성과 특성 규명

  • Park, Sun-Wha (Department of Biological Science, Kongju National University) ;
  • Hyun, Young-Se (Department of Biological Science, Kongju National University) ;
  • Chung, Ki-Wha (Department of Biological Science, Kongju National University)
  • Published : 2009.09.30

Abstract

Ginseng (Panax ginseng C.A. Meyer) is one of the most important medicinal plants in East Asia. Microsatellite or simple sequence repeat (SSR) markers are used in obtaining genetic analysis and authentication in many plants. The present study examined five microsatellites in conjunction with P. ginseng in Korea. The total observed allelic number was 17 (mean = 3.4), and gene diversities varied from 0.078 to 0.543 with an average of 0.314. Through a combined analysis of five loci in 100 ginseng samples, 44 different combined genotypes were observed. Expected and observed heterozygosites ranged from 0.077 to 0.541 (mean = 0.313) and 0.040 to 0.130 (0.083), respectively. All examined loci exhibited deficiency of heterozygosity and deviation from the Hardy-Weinberg equilibrium. Such results may be explained by the non-random mating and inbreeding that has occurred for several hundred years. These microsatellite markers could be used for the study of molecular genetics and the establishment of DNA marker database, as well as authentication of ginseng species and chromosomal mapping of QTL loci in P. ginseng.

인삼에 대한 microsatellite 개발은 다른 분자적 마커들에 비해 늦게 이루어져, 최근에 와서야 인삼의 microsatellite 들이 보고되고 있는 실정이다. 본 연구에서는, 분리된 microsatellite들 중에서 5 개의 다형성 마커를 선별하여 국내 경작지나 시장에서 유통되는 인삼을 대상으로 유전적 다형성을 조사하고, 각 마커의 특성을 규명하였다. 유전자형 분석은 변성 PAGE와 silver staining법으로 하거나 형광표지 primer로 표지한 PCR 산물을 자동 염기서열 분석기로 분석하였다. 본 연구에서 개발한 5개의 microsatellite 마커들의 평균 대립유전자 수는 3.2 개였으며, 평균 GD는 0.367 였다. 전체적으로 볼 때, PG1419가 가장 높은 다형성을 보였으며 (PIC: 0.460, GD: 0.543), PG770은 가장 낮은 다형성을 나타내었다 (PIC: 0.070, GD: 0.078). 각 좌위들의 예상 이형접합도 (H$_{exp}$)는 0.077에서 0.541 (mean = 0.313)로 계산되었으나, 관측 이형접합도 (H$_{obs}$)는 0.040에서 0.130 (mean = 0.083)으로 훨씬 낮게 관찰되었으며, 유전자형의 분포는 Hardy-Weinberg 평형상태에서 벗어남을 보였다. 본 연구에서 개발한 인삼의 microsatellite 마커들은 인삼의 분자적 마커의 데이터베이스 확립의 기초 자료로 활용될 뿐 아니라, 인삼의 분자적 구별법 및 QTL 좌위의 염색체지도 작성에 유용하게 활용될 것이다.

Keywords

References

  1. Nam, KY. Recent Korean Ginseng (Components and Efficay). Korea Tobacco & Ginseng Research Institute. Taejeon. Korea (1996)
  2. Hon CC, Chow YC, Zeng FY, Leung FC. Genetic authentication of ginseng and other traditional Chinese medicine. Acta Pharmacol Sin. 24: 841-846 (2003)
  3. Fushimi H, Komatsu K, Isobe M, Namba T. Application of PCR-RFLP and MASA analyses on 18S ribosomal RNA gene sequence for the identification of three ginseng drugs. Biol Pharm Bull. 20: 765-769 (1997) https://doi.org/10.1248/bpb.20.765
  4. Ngan F, Shaw P, But P, Wang J. Molecular authentication of Panax species. Phytochemistry 50: 787-791 (1999) https://doi.org/10.1016/S0031-9422(98)00606-2
  5. Um JY, Chung HS, Kim MS, Na HJ, Kwon HJ, Kim JJ, Lee KM, Lee SJ, Lim JP, Do KR. Hwang WJ, Lyu YS, An NH, Kim HM. Molecular authentication of Panax ginseng species by RAPD analysis and PCR-RFLP. Biol Pharm Bull. 24:872-875 (2001) https://doi.org/10.1248/bpb.24.872
  6. Ha WY, Shaw PC, Liu J, Yau FC, Wang J. Authentication of Panax ginseng and Panax quinquefolius using amplified fragment length polymorphism (AFLP) and directed amplification of minisatellite region DNA (DAMD). J Agric Food Chem. 50: 1871-1875 (2002) https://doi.org/10.1021/jf011365l
  7. Shim YH, Choi JH, Park CD, Lim CJ, Cho JH, Kim HJ. Molecular differentiation of Panax species by RAPD analysis. Arch Pharm Res. 26: 601-605 (2003) https://doi.org/10.1007/BF02976708
  8. Shao AJ, Li X, Huang LQ, Wei JH, Lin SF. Molecular differentiation of Panax species by RAPD analysis. Zhongguo Zhong Yao Za Zhi 29: 1033-1036 (2004)
  9. Lim W, Mudge KW, Weston LA. Utilization of RAPD markers to assess genetic diversity of wild populations of North American ginseng (Panax quinquefolium). Planta Med. 73:71-76 (2007) https://doi.org/10.1055/s-2006-951768
  10. Shim YH, Park CD, Kim DH, Cho JH, Cho MH, Kim HJ. Identification of Panax species in the herbal medicine preparations using gradient PCR method. Biol Pharm Bull. 28:671-676 (2005) https://doi.org/10.1248/bpb.28.671
  11. Diao Y, Lin XM, Liao CL, Tang CZ, Chen ZJ, Hu ZL. Authentication of Panax ginseng from its adulterants by PCR-RFLP and ARMS. Planta Med. 75: 557-560 (2009) https://doi.org/10.1055/s-0029-1185321
  12. Tautz D. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res. 17: 6463-6471 (1989) https://doi.org/10.1093/nar/17.16.6463
  13. Kim J, Jo BH, Lee KL, Yoon ES, Ryu GH, Chung KW. Identification of new microsatellite markers in Panax ginseng. Mol Cells 24: 60-68 (2007)
  14. Ma K-H, Dixit A, Kim Y-C, Lee D-Y, Kim T-S, Cho E-G, Park Y-J. Development and characterization of new microsatellite markers for ginseng (Panax ginseng C. A. Meyer). Conserv Genet. 8: 1507-1509 (2007) https://doi.org/10.1007/s10592-007-9284-4
  15. Jo BH, Suh DS, Cho EM, Kim J, Ryu GH, Chung KW. Characterization of polymorphic microsatellite loci in cultivated and wild Panax ginseng. Genes Genomics 31: 119-127 (2009) https://doi.org/10.1007/BF03191145
  16. Van Dan N, Ramchiary N, Choi SR, Uhm TS, Yang T-J, Ahn I-O, Lim YP. Development and characterization of new microsatellite markers in Panax ginseng (C.A. Meyer) from BAC end sequences. Conserv Genet. In press (2009)
  17. Kim KJ, Lee HL. Complete chloroplast genome sequences from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. DNA Res. 11: 247-261 (2004) https://doi.org/10.1093/dnares/11.4.247
  18. Bassam BJ, Caetano-Anollés G, Gresshoff PM. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem. 196: 80-83 (1991) https://doi.org/10.1016/0003-2697(91)90120-I
  19. Nei M. Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70: 3321-3323 (1973) https://doi.org/10.1073/pnas.70.12.3321
  20. Ohta T, Kimura M. Linkage disequilibrium at steady state determined by random genetic drift and recurrent mutation. Genetics 63: 229-238 (1969)
  21. Qin J, Leung FC, Fung Y, Zhu D, Lin B. Rapid authentication of ginseng species using microchip electrophoresis with laser-induced fluorescence detection. Anal Bioanal Chem. 381: 812-819 (2005) https://doi.org/10.1007/s00216-004-2889-2
  22. Kantety RV, La Rota M, Matthews DE, Sorrells ME. Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol Biol. 48: 501-510 (2002) https://doi.org/10.1023/A:1014875206165
  23. Kraic J, Gregová E, Jomová K, Hudcovicová M. Microsatellite markers discriminating accessions within collections of plant genetic resources. Cell Mol Biol Lett. 7: 745-751 (2002)
  24. Sharopova N, McMullen MD, Schultz L, Schroeder S, Sanchez-Villeda H, Gardiner J, Bergstrom D, Houchins K, Melia-Hancock S, Musket T, Duru N, Polacco M, Edwards K, Ruff T, Register JC, Brouwer C, Thompson R, Velasco R, Chin E, Lee M, Woodman-Clikeman W, Long MJ, Liscum E, Cone K, Davis G, Coe EH Jr. Development and mapping of SSR markers for maize. Plant Mol Biol. 48: 463-481 (2002) https://doi.org/10.1023/A:1014868625533

Cited by

  1. Microsatellite Analysis of <i>Panax ginseng</i> Natural Populations in Russia vol.05, pp.04, 2014, https://doi.org/10.4236/cm.2014.54028