동결/해동 조건에서 기체확산층이 고분자전해질연료전지의 내구성에 미치는 영향에 관한 연구

Investigation of Gas Diffusion Layer Effects on the Freeze/Thaw Condition Durability in PEFCs

  • 임수진 (한국에너지 기술연구원 연료전지연구단) ;
  • 박구곤 (한국에너지 기술연구원 연료전지연구단) ;
  • 박진수 (한국에너지 기술연구원 연료전지연구단) ;
  • 손영준 (한국에너지 기술연구원 연료전지연구단) ;
  • 임성대 (한국에너지 기술연구원 연료전지연구단) ;
  • 양태현 (한국에너지 기술연구원 연료전지연구단) ;
  • 김창수 (한국에너지 기술연구원 연료전지연구단)
  • Lim, Soo-Jin (Fuel Cell Research Center, Korea Institute of Energy Research) ;
  • Park, Gu-Gon (Fuel Cell Research Center, Korea Institute of Energy Research) ;
  • Park, Jin-Soo (Fuel Cell Research Center, Korea Institute of Energy Research) ;
  • Sohn, Young-Jun (Fuel Cell Research Center, Korea Institute of Energy Research) ;
  • Yim, Sung-Dae (Fuel Cell Research Center, Korea Institute of Energy Research) ;
  • Yang, Tae-Hyun (Fuel Cell Research Center, Korea Institute of Energy Research) ;
  • Kim, Chang-Soo (Fuel Cell Research Center, Korea Institute of Energy Research)
  • 발행 : 2009.08.30

초록

The effect of gas diffusion layers (GDLs) on the freeze/thaw condition durability in polymer electrolyte fuel cells (PEFCs) were investigated. For this purpose, three kinds of GDLs, such as, felt, paper and cloth types with different basic properties have been first prepared, then the changes in the properties and performance of cells was observed during the freeze/thaw cycles ranging from -30 to $70^{\circ}C$. The performance evaluations were conducted by using the single cells consisting of different GDLs. The performance degradation and the cell resistance increase could be directly correlated. The physical destruction of electrode was shown by SEM analysis. The mechanically supporting ability on the interface between the cell components can help enhancing the durability of PEFCs in the freeze/thaw condition.

키워드

참고문헌

  1. www1.eere.energy.govlhydrogenandfuelcells/pdf s/fc_report_congress_feb2003.pdf
  2. F. N. Buehi, A. B. Geiger, R P. Neto, 'Dependence of current distribution on water management in PEFC of technical size', J. Power Sources, Vol. 145, 2005, p. 62 https://doi.org/10.1016/j.jpowsour.2004.12.039
  3. U. Pasaogullari, C. Y. Wang, 'Two-phase transport and the role of micro-porous layer in polymer electrolyte fuel cells', Chim. Acta, Vol. 49, 2004, p. 4359 https://doi.org/10.1016/j.electacta.2004.04.027
  4. Y. S. Kim, L. Dong, M. A. Hickner, T. E. Glass, V. Webb, J. E. McGrath, 'State of water in disulfonated poly(arylene ether sulfone) copolymer and a perfluorosulfonic acid copolymer (Nation) and its effect on physical and electrochemical properties', Macromolecules, Vol. 36, 2003, p. 6281 https://doi.org/10.1021/ma0301451
  5. M. Saito, K. Hayamizu, T. Okada, 'Temperature dependence of inomer and water transport in perfluorinated ionmer membranes for fuel cells', J. Phys. Chem. Vol. 109, 2005, p. 3112 https://doi.org/10.1021/jp045624w
  6. M. Oszcipok, D. Riemann, U. Kronenwett, M. Kreideweis, M Zedda, 'Statistic analysis of operational influences on the cold start behavior of PEM fuel cells', J. Power Source, Vol. 145, 2005, p. 407 https://doi.org/10.1016/j.jpowsour.2005.02.058
  7. E. J. Ahn, Y. G. Yoon, G. G. Park, J. S. Park, W. Y. Lee, H. S. Han, C. S. Kim, 'Property changes of gas diffusion layer in a PEFC by compression', Trans. of the Korean Society of Hydrogen Energy, Vol. 17, 2006, p. 347
  8. G. G. Park, Y. J. Sohn, T. H Yang, Y. G. Yoon, C. S. Kim, 'Effect of PTFE contents in the gas diffusion media on the performance of PEMFC', J. Power Source, Vol. 131, 2004, p. 182 https://doi.org/10.1016/j.jpowsour.2003.12.037
  9. R. Mukundan, Y. S. Kim, F. Garzon, B. Pivovar, 'Freeze/thaw effects in PEM fuel cells', ECS Trans., Vol. 1, 2006, p. 140 https://doi.org/10.1149/1.2214572
  10. R. Mukuncan, Y. S. Kim, T. Tockward, J. R. Davey, B. Pivovar, D. S. Hussey, D. L. Jacobson, M. Arif, R. Borup, 'Performance of PEM fuel cells at sub-zero temperature', ECS trans., Vol. 11, 2007, p. 243 https://doi.org/10.1149/1.2778668
  11. S. He, M M Mench, 'One-dimensional transient model for frost heave in polymer electrolyte fuel cells', J. Electrochern. Soc., Vol. 153, 2006, p. A1724 https://doi.org/10.1149/1.2216547
  12. S. He, S. H. Kim, M. M. Mench, 'lD transient model for frost heave in polymer electrolyte fuel cells II. Parametric study', J. Electrochern. Soc., Vol. 154, 2007, p. B1024 https://doi.org/10.1149/1.2766616
  13. S. Kim, M. M. Mench, 'Physical degradation of membrane electode assemblies undergoing freeze/thaw cycling; Micro-strure effects', J. Power Source, Vol. 174, 2007, p. 206 https://doi.org/10.1016/j.jpowsour.2007.08.111
  14. S. He, J. H. Lee, M. M. Mench, 'ID transient model for frost heave in polymer electrolyte fuel cells Ill. Heat transfer, microporous, and cycling effects', J. Electochem. Soc., Vol. 154, 2007, p. B1227 https://doi.org/10.1149/1.2784183
  15. S. Ge, C. Y. Wang, 'Cyclic voltametry study of ice formation in the PEFC catalyst layer during cold start', J. Electochem. Soc. Vol. 154, 2007, p. B1399 https://doi.org/10.1149/1.2784166
  16. I. Nitta, 'Inhomogeneous compression of PEMFC gas diffusion layers', TKK Dissertations 106, 2008
  17. M. Budinski, C. Gittleman, Y. Lai, D. Miller, K. O'Leary, 'Mechanical and chemical degradation in automotive fuel cell membranes',International workshop on degradation issue of fuel cells, 2007