Ultrasonic Phantom Based on Plastic Material for Elastography

초음파 탄성 영상 평가를 위한 플라스틱 기반의 팬텀 개발

  • Ahn, Dong-Ki (Department of Electronic Engineering, Daejin University) ;
  • Joung, Mok-Keun (Department of Electronic Engineering, Daejin University)
  • Published : 2009.08.30

Abstract

A human tissue mimicking phantom is constructed to assess the performance of a medical ultrasound elasticity imaging system. In a human body, the tumor or cancer is stiffer than its surrounding normal tissue. A technique fur imaging the elasticity of such a tissue is referred to as elastography. Homogeneous elasticity phantoms with differing Young's moduli are constructed using a plastic hardener and softener to simulate the mechanical characteristics of a diseased human tissue. The Young's modulus of the fabricated homogeneous phantom materials were measured from 11.1 to 79.6 kPa depending on the mixing ratio of the amount of the hardener to that of the softener. An ultrasound lesion mimicking phantom was made of these materials, and ultrasound elasticity imaging was performed on it. It is confirmed in this paper that the fabricated plastic-based elasticity phantom is useful in representing the elastic characteristics of a human tissue.

초음파 의료용 탄성 영상 시스템의 성능을 평가하기 위한 인체 조직 모사 팬텀을 제작하였다. 인체에서 종양이나 암 조직은 주위의 정상조직보다 단단한 특성을 가진다. 이러한 조직의 단단함을 영상화하는 기법이 탄성 영상 기법이다. 인체의 병변 조직의 기계적인 특성을 모사하기 위하여 플라스틱 경화제와 연화제를 이용하여 탄성도가 다른 균일 탄성 팬텀을 제작하였다. 제작된 균일 탄성 팬텀은 시료의 비율에 따라 $11.1{\sim}79.6$ kPa 범위의 탄성계수 값을 얻었다. 이를 바탕으로 외부 매질과 내부 매질의 탄성계수 차이가 5배와 7배 정도인 초음파 병변 모사 팬텀을 제작하여 탄성 영상을 획득하였다. 본 논문에서는 제작된 플라스틱 기반의 탄성 팬텀이 인체의 탄성 특성을 모사하는 탄성 팬텀으로서 유용함을 확인하였다.

Keywords

References

  1. J. Ophir, I. Cespedes, H. Ponnekanti, Y. Yazdi and X. Li, 'Elastography: A quantitative method for imaging the elasticity of biological tissues,' Ultrason. Imaging, Vol. 13, pp. 111-134, (1991) https://doi.org/10.1016/0161-7346(91)90079-W
  2. E. L. Madson, J. A. Zagzebeki, R. A. Banjavic and R. Jutila, 'Tissue mimicking materials for ultrasound phantoms,' Medical Physics, Vol. 5, pp. 391-394, (1978) https://doi.org/10.1118/1.594483
  3. M. M. Burlew, E. L. Madsen, J. A. Zagzebski, R. A. Banjavie and S. W. Sum, 'A new ultrasound tissue-equivalent material,' Radiation Physics, Vol. 134, pp. 517-520, (1980)
  4. G. J. Lee, D. H. Park, T. M. Shin and J. B. Seo, 'Analysis of properties and phantom design based on plastic hardener and softener for ultrasonic imaging,' J. Biomed. Eng. Res., Vol. 29, No.4, pp. 302-306, (2008)
  5. ATS Labs., Inc., http://www.atslabs.com
  6. Computerized Imaging Reference System, Inc., http://cirsinc.com
  7. T. J. Hall, M. F. Insana and T. A. Krouskop, 'Phantom materials for elastography, ' IEEE Trans. Ultrason. Ferroelect. Freq. Contr., Vol. 44, No.6, pp. 1355-1365, (1997) https://doi.org/10.1109/58.656639
  8. T. Kondo and M. Kitatuji, 'New tissue mimicking materials for ultrasound phantoms,' in Proc. IEEE Ultrason. Symp., pp. 1664-1667, (2005)
  9. T. Kondo and H. Fujimoto, 'Ultrasound tissue-mimicking materials using oil gel and measurement of their characteristics,' Jpn. J. Appl. Phys., Vol. 41, pp. 3598-3599, (2002) https://doi.org/10.1143/JJAP.41.3598
  10. K. Kawabata, Y. Waki, T. Matsumura and S. Umemura, 'Tissue mimicking phantom for ultrasonic elastography with finely adjustable elastic and echographic properties,' in Proc. IEEE Ultrason. Symp., pp. 1502-1505, (2004)
  11. E. L. Madsen, J. A. Zagzebski and G. R. Frank, 'Oil-in-gelatin dispersions for use as ultrasonically tissue-mimicking materials,' Ultrasound Med. BioI., Vol. 8, No.3, pp. 277-287, (1982) https://doi.org/10.1016/0301-5629(82)90034-5
  12. T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Carra and T. Hall, 'Elastic moduli of breast and prostate tissues under compression,' Ultrason. Imaging, Vol. 20, pp. 260-274, (1998) https://doi.org/10.1177/016173469802000403
  13. M. K. Jeong and S. J. Kwon, 'An efficient method for estimating average speed of sound in ultrasound medical imaging,' J. Biomed. Eng. Res., Vol. 19, No.3, pp. 321-325, (1998)
  14. R. Q. Erkamp, P. Wiggins, A. R. Skovoroda, S. Y. Emilanov, and M. O'Donnell, 'Measuring the elastic modulus of small tissue samples,' Ultrason. Imaging, Vol. 20, pp. 17-28, (1998) https://doi.org/10.1177/016173469802000102
  15. M. K. Jeong, S. J. Kwon, and M. H. Bae, 'Real-time implementation of medical ultrasound strain imaging system,' J. Nondestructive Testing Kor., Vol. 28, No.2, pp. 101-111, (2008)
  16. M. K. Jeong and S. J. Kwon, 'Enhanced strain imaging using quality measure,' J. Acoust. Soc. Kor., Vol. 27, No. 3E, pp. 84-94, (2008)