MODIFIED DECOMPOSITION METHOD FOR SOLVING INITIAL AND BOUNDARY VALUE PROBLEMS USING PADE APPROXIMANTS

  • Published : 2009.09.30

Abstract

In this paper, we apply a new decomposition method for solving initial and boundary value problems, which is due to Noor and Noor [18]. The analytical results are calculated in terms of convergent series with easily computable components. The diagonal Pade approximants are applied to make the work more concise and for the better understanding of the solution behavior. The proposed technique is tested on boundary layer problem; Thomas-Fermi, Blasius and sixth-order singularly perturbed Boussinesq equations. Numerical results reveal the complete reliability of the suggested scheme. This new decomposition method can be viewed as an alternative of Adomian decomposition method and homotopy perturbation methods.

Keywords

References

  1. N. Anderson, A. M. Arthurs and P. D. Robinson, Complementary variational principles for a generalized diffusion equation, Proc. Royal Soc. A 303 (1968), 497-502. https://doi.org/10.1098/rspa.1968.0064
  2. V. Bush and S. H. Caldwell, Thomas-Fermi equation solution by the differential analyzer, Phys. Rev. 38 (1931), 1898-1901. https://doi.org/10.1103/PhysRev.38.1898
  3. B. L. Burrows and P. W. Core, A variational iterative approximate solution of the Thomas- Fermi equation, Quart. Appl. Math. 42 (1984), 73-76.
  4. C. M. Bender, K. A. Milton, S. S. Pinky and L. M. Simmons Jr., A new perturbative approach to nonlinear problems, J. Math. Physics, 30 (7) (1989), 1447-1455. https://doi.org/10.1063/1.528326
  5. J. Boyd, Pade approximant algorithm for solving nonlinear ordinary differential equation boundary value problems on an unbounded domain, Comput. Phys. 11 (3) (1997), 299-203. https://doi.org/10.1063/1.168606
  6. C. Y. Chan and Y. C. Hon, A constructive solution for a generalized Thomas-Fermi theory of ionized atoms, Quart. Appl. Math. 45 (1987), 591-599.
  7. A. Cedillo, A perturbative approach to the Thomas-Fermi equation in terms of the density, J. Math. Phys. 34 (7) (1993), 2713-2717. https://doi.org/10.1063/1.530090
  8. M. A. Noor and K. I. Noor ,Some iterative methods for solving nonlinear equations. Appl. Math. Comput.184 (2007),270-275. https://doi.org/10.1016/j.amc.2006.05.165
  9. M. A. Noor and K. I. Noor ,Some iterative schemes for nonlinear equations. Appl. Math. Comput.183 (2006),774-779. https://doi.org/10.1016/j.amc.2006.05.084
  10. M. A. Hajji and K. Al-Khalid, Analytic studies and numerical simulation of the generalized Boussinesq equation, App. Math. Comput.191 (2007), 322-333.
  11. J. H. He, Variational approach to Thomas-Fermi equation, Appl. Math. Comput. 143 (2003), 533-535. https://doi.org/10.1016/S0096-3003(02)00380-6
  12. Y. C. Hon, Adomian's decomposition method for Thomas-Fermi, SEA Bull. Math. 20 (3) (1996), 55-58.
  13. S. Kobayashi, T. Matsukuma, S. Nagai and K. Umeda, Some coefficients of the TFD function, J. Phys. Soc. Japan 10 (1955), 759-765. https://doi.org/10.1143/JPSJ.10.759
  14. B. J. Laurenzi, An analytic solution to the Thomas-Fermi equation, J. Math. Phys. 31 (10) (1990), 2535-2537. https://doi.org/10.1063/1.528998
  15. S. Momani, and V. S. Erturk, Solution of nonlinear oscillators by modified differential transform method, Comput. Math. Appl. (2007), in press.
  16. S. T. Mohyud-Din, A reliable algorithm for Blasius equation, Proceedings of International Conference on Mathematical Sciences, Selangor, Malaysia (2007), 616-626.
  17. S. T. Mohyud-Din, M. A. Noor and A. Waheed, Exp-function method for generalized travelling solutions of good Boussinesq equations, J. Appl. Math. Comput.. (2008), DOI 10.1007/s12190-008-0183-8.
  18. M. A. Noor and K. I. Noor, Improved iterative methods for solving nonlinear equations, Appl. Math. Comput. 184(2007), 270-275 https://doi.org/10.1016/j.amc.2006.05.165
  19. M. A. Noor and S. T. Mohyud-Din, Variational iteration method for solving higher-order nonlinear boundary value problems using He's polynomials, Int. J. Nonlin. Sci. Num. Simul. 9 (2) (2008), 141-157.
  20. M. A. Noor and S. T. Mohyud-Din, Homotopy perturbation method for nonlinear higher- order boundary value problems, Int. J. Nonlin. Sci. Num. Simul. 9(4) (2008), 395-408.
  21. M. A. Noor and S. T. Mohyud-Din, Variational iteration method for unsteady flow of gas through a porous medium using He's polynomials and Pade approximants, Comput. Math. Appl. (2008).
  22. M. A. Noor and S. T. Mohyud-Din, Solution of singular and nonsingular initial and bound- ary value problems by modified variational iteration method, Math. Prob. Engng. 2008 (2008), Article ID 917407, 23 pages, doi:10.1155/2008/917407.
  23. M. A. Noor, S. T. Mohyud-Din and M. Tahir, Modified variational iteration methods for Thomas-Fermi equation, W. Appl. Sci. J. 4 (4) (2008), 479-498.
  24. M. A. Noor, K. I. Noor, S. T. Mohyud-Din and A. Shabir, An iterative method with cubic convergence for nonlinear equations, Appl. Math. Comput.183 (2006), 1249-1255. https://doi.org/10.1016/j.amc.2006.05.133
  25. M. A. Noor and S. T. Mohyud-Din, An iterative method for solving Helmholtz equations, A. J. Math. Mathl. Sci. 1 (2007), 9-15.
  26. M. A. Noor and S. T. Mohyud-Din, Anew approach to fifth-order boundary value problems, Int. Journal of Nonlinear sciences, 5(2008).
  27. R. K. Sabirov, Solution of the Thomas-Fermi-Dirac of the statistical model of an atom at small distances from the nucleus, Opt. Spect. 75 (1) (1993), 1-2.
  28. S. N. Venkatarangan and K. Rajalalhmi, Modification of Adomian's decomposition method to solve equations containing radicals, Comput. Math. Appl. 29 (6) (1995), 75-80.
  29. A. M. Wazwaz, The modified decomposition method and Pade approximants for solving Thomas-Fermi equation, Appl. Math. Comput. 105 (1999), 11-19. https://doi.org/10.1016/S0096-3003(98)10090-5
  30. A. M. Wazwaz, A study on a boundary-layer equation arising in an incompressible fluid, Appl. Math. Comput. 87 (1997), 199-204. https://doi.org/10.1016/S0096-3003(96)00281-0
  31. A. M. Wazwaz, A reliable algorithm for solving boundary value problems for higher order integro differential equations, Appl. Math. Comput. 118 (2000), 327-342.
  32. L. Xu, He's homotopy perturbation method for a boundary layer equation in unbounded domain, Comput. Math. Appl. 54 (2007), 1067-1070. https://doi.org/10.1016/j.camwa.2006.12.052