ALGORITHM FOR THE CONSTRUCTION OF THE STATE TRANSITION DIAGRAM OF A SACA OVER GF($2^p$)

  • Choi, Un-Sook (Department of Multimedia Engineering, Tongmyoung University) ;
  • Cho, Sung-Jin (Division of Mathematical Sciences, Pukyong National University)
  • Published : 2009.09.30

Abstract

In this paper, we analyze the behavior of the state transition of nongroup CA with a single attractor over GF($2^p$)(p > 1), and propose the algorithm for the construction of the state transition diagram of a Single Attractor CA(SACA) over GF($2^p$) which is very different from the construction algorithm for the state transition diagram of GF(2) SACA.

Keywords

References

  1. C. Chattopadhyay, Some studies on theory and applications of additive Cellular Automata, Ph. D. Thesis, I.I.T., Kharagpur, India, (2002).
  2. S.J. Cho, U.S. Choi and H.D. Kim, Analysis of complemented CA derived from a linear TPMACA, Computers and Mathematics with Applications 45 Issues 4-5 (2003) 689-698. https://doi.org/10.1016/S0898-1221(03)00028-2
  3. S.J. Cho, U.S. Choi and H.D. Kim, Behavior of complemented CA whose complement vector is acyclic in a linear TPMACA, Mathematical and Computer Modelling 36 Issues 9-10 (2002), 979-986. https://doi.org/10.1016/S0895-7177(02)00251-0
  4. S.J. Cho, U.S. Choi, Y.H. Hwang, H.D. Kim and H.H. Choi, Behaviors of single attractor cellular automata over Galois field GF(2p), In Proc. ACRI 2006 LNCS 4173 (2006), 232-237.
  5. S.J. Cho, U.S. Choi, H.D. Kim, Y.H. Hwang, J.G. Kim and S.H. Heo, New synthesis of one-dimensional 90/150 linear hybrid group cellular automata, IEEE Trans. Comput.- Aided Design Integr. Circuits Syst. 26 (9) (2007) 1720-1724.
  6. S.J. Cho, U.S. Choi, Y.H. Hwang, Y.S. Pyo, H.D. Kim and S.H. Heo, Computing Phase Shifts of Maximum-Length 90/150 Cellular Automata Sequences, Lecture Notes in computer Science 3305 (2004), 31-39.
  7. A.K. Das, Additive Cellular Automata: Theory and Applications as a Built-In Self-Test Structure, Ph. D. Thesis, I.I.T. Kharagpur, India, (1990).
  8. A.K. Das and P.P. Chaudhuri, Efficient characterization of cellular automata, Proc. IEE(Part E) 137 (1) (1990), 81-87.
  9. A.K. Das and P.P. Chaudhuri, Vector space theoretic analysis of additive cellular automata and its application for pseudo-exhaustive test pattern generation, IEEE Trans. Comput. 42 (1993), 340-352. https://doi.org/10.1109/12.210176
  10. J. Von Neumann, Theory of self-reproducing automata, University of Illinois Press Urbana, IL, (1966).
  11. S. Nandi, B.K. Kar and P.P. Chaudhuri, Theory and applications of cellular automata in cryptography, IEEE Trans. Computers 43 (1994), 1346-1357. https://doi.org/10.1109/12.338094
  12. K. Paul, Theory and Application of GF(2p) Cellular Automata, Ph. D. Thesis, B.E. College (Deemed University), Howrah, India, (2002).
  13. B.K. Sikdar, N. Ganguly, P. Majumder and P.P. Chaudhuri, Design of Multiple Attractor GF(2p) Cellular Automata for Diagnosis of VLSI Circuits, VLSI Design, Fourteenth International Conference on 2001 (2001), 454-459.
  14. B.K. Sikdar, P. Majumder, M. Mukherjee, N. Ganguly, D.K. Das and P.P. Chaudhuri, Hierarchical Cellular Automata as an On-Chip Test Pattern Generator, VLSI Design, Fourteenth International Conference on 2001 (2001), 403-408.
  15. S. Sen, C. Shaw, D.R. Chowdhury, N. Ganguly and P.P. Chaudhuri, Cellular automata based cryptosystem, Proc. ICICS (2002), 303-314.
  16. P. Tsalides, T.A. York and A. Thanailakis, Pseudo-random number generators for VLSI systems based on linear cellular automata, IEE Proc. E. Comput. Digit. Tech. 138 (1991), 241-249. https://doi.org/10.1049/ip-e.1991.0031
  17. S. Wolfram, Statistical mechanics of cellular automata, Rev. Modern Physics, 55 (3) (1983), 601-644. https://doi.org/10.1103/RevModPhys.55.601