유비퀴틴화에 의한 세포 내 p53의 기능 조절

Regulation of cellular functions of p53 by ubiquitination

  • 정진혁 (건국대학교 유전단백체 기능제어연구센터) ;
  • 이준영 (건국대학교 유전단백체 기능제어연구센터) ;
  • 이선미 (건국대학교 유전단백체 기능제어연구센터) ;
  • 최태부 (건국대학교 미생물공학과) ;
  • 안성관 (건국대학교 유전단백체 기능제어연구센터)
  • Jung, Jin-Hyuk (Functional Genoproteome Research Centre, Konkuk University) ;
  • Lee, Joon-Young (Functional Genoproteome Research Centre, Konkuk University) ;
  • Lee, Sun-Mi (Functional Genoproteome Research Centre, Konkuk University) ;
  • Choe, Tae-Boo (Department of Microbial Engineering, Konkuk University) ;
  • An, Sung-Kwan (Functional Genoproteome Research Centre, Konkuk University)
  • 발행 : 2009.06.29

초록

p53은 전사인자로서 세포의 사멸이나 세포주기 조절 등 다양한 세포 활성을 보이기 때문에 일반적인 환경에서는 매우 낮은 수준으로 단백질 양이 확인된다. p53의 단백질 양과 활성은 다양한 세포 내 신호에 의하여 이루어지는 후전사 변형을 통하여 조절 받는다. 이중 유비퀴틴화는 세포 내에서 p53 단백질의 발현 수준이 낮게 유지되는 것이 가능하게 하는 대표적인 기전이다. 이러한 기전을 일으키는 대표적인 p53의 E3 ligase로는 mdm2, Pirh2, COP1, ARF-BP1 등이 보고되어 있으며, 각각 negative feedback loop나 다른 기전을 통하여 p53 단백질의 분해를 유도하여 세포의 항상성을 조절한다. 이 밖에도 p53은 mdm2나 WWP1, UBC13, MSL2와 같은 E3 ligase로 인해서 모노 유비퀴틴화 되고, p53의 세포 내 위치가 조절되어 전사인자로서의 활성이 억제된다. p53의 세포 내 위치와는 관계없이 p53의 전사인자로써의 활성 또한 아세틸화와 유비퀴틴화의 경쟁적 반응으로 인해 조절 될 수 있다. E4F1에 의한 유비퀴틴화는 세포주기와 관련된 유전자의 발현을 증가시키되 세포사멸 관련 유전자의 발현은 감소시키는 것으로 보아 p53의 수많은 downstream gene의 발현 또한 유비퀴틴화를 통해 조절 될 수 있음이 제시되었다. 앞으로의 연구는 신규 E3 ligase에 의한 p53의 유비퀴틴화 기전 연구 뿐 아니라 이와 관련된 다른 변형과의 관계에 대한 연구 또한 매우 중요하게 부각되어 질 것으로 예상된다.

p53 undergoes various post-translational modifications, including phosphorylation, ubiquitination, sumoylation, acetylation, methylation, and poly(ADP-ribosyl)ation. Modification of p53 widely affects to various functions of p53. Acetylation and phosphorylation of p53 have been studied for regulating its transcriptional activity which is observed in various stress condition. Otherwise, ubiquitination of p53 by Mdm2 has been well-studied as a canonical ubiquitin-mediated proteasomal degradation pathway. Moreover several investigators have recently reported that ubiquitination of p53 modulates not only its proteasome-dependent degradation by poly-ubiquitination but also its localization and transcriptional activity by mono-ubiquitination which usually does not serve the proteasome dependent degradation. Here we review recent studies on the cellular functions of p53 regulated by post-translational modifications, particularly focusing on mechanisms of ubiquitination.

키워드

참고문헌

  1. Baker, S. J., A. C. Preisinger, J. M. Jessup, C. Paraskeva, S. Mrakowitz, J. K. Willson, S. Hamilton, and B. Voge1stein (1990), p53 gene mutation occur in combination with 17p allelic deletions as late events in cololectal tumorigenesis, Cancer Res. 23, 717-722
  2. Hsu, I. C., R. A. Metcalf, T. Sun, J. A. Welsh, N. J. Wang, and C. C. Harris (1991), Mutational hotspot in the p53 gene in human hepatocellular carcinomas, Nature 350, 427-428 https://doi.org/10.1038/350427a0
  3. Sidransky, D., A. von Eschenbach, Y. C. Tsai, P. Jones, I. Summerhayes, F. Marshall, M. Paul, P. Green, S. R. Hamilton, and P. Frost (1991), Identification of p53 gene mutations in bladder cancers and urine samples, Science 252, 706-709 https://doi.org/10.1126/science.2024123
  4. Hollstein, M., D. Sidransky, B. Vogelstein, and C. C. Harris (1991), p53 mutations in human cancers, Science 253, 49-53 https://doi.org/10.1126/science.1905840
  5. Lane, D. P. (1992), Cancer. p53, guardian of the genome, Nature 358, 15-16 https://doi.org/10.1038/358015a0
  6. Dulic, V., W. K. Kau:frnann, S. J. Wilson, T. D. Tlsty, E. Lees, J. W. Harper, S. J. Elledge, and S. I. Reed (1994), p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiationinduced G1 arrest, Cell 76, 1013-1023 https://doi.org/10.1016/0092-8674(94)90379-4
  7. el-Deiry, W. S., J. W. Harper, P. M. O 'Connor, V. E. Velculescu, C. E. canman, J. Jackman, J. A. Pietenpol, M. Burrell, D. E. Hill, and Y. Wang (1994), WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis, Cancer Res. 54, 1169-1174
  8. Yonish-Rouach, E., D. Resnitzky, J. Lotem, L. Sachs, A. Kimchi, and M. Oren (1991), Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6, Nature 352, 345-347 https://doi.org/10.1038/352345a0
  9. Lowe, S. W., E. M. Schmitt, S. W. Smith, B. A. Osbome, and T. Jacks (1993), p53 is required for radiation-induced apoptosis in mouse thymocytes, Nature 362, 847-849 https://doi.org/10.1038/362847a0
  10. Vaziri, H., M. D. West, R. C. Allsopp, T. S. Davison, Y. S. Wu, C. H. Arrowsmith, G. G. Poirier, and S. Benchimol (1997), ATM-dependent telomere loss in aging human diploid fibrob1asts and DNA damage lead to the post-translational activation of p53 protein involving poly(ADP-ribose) polymerase, EMBO J. 16, 6018-6033 https://doi.org/10.1093/emboj/16.19.6018
  11. Bond, J., M. Haughton, J. Blaydes, V. Gire, D. Wynford-Thomas, and F. Wyllie (1996), Evidence that transcriptional activation by p53 plays a direct role in the induction of cellular senescence, Oncogene 13, 2097-2104
  12. Crighton, D., S. Wilkinson, J. O ’Prey, N. Syed, P. Smith, P. R. Harrison, M. Gasco, O. Garrone, T. Crook, and K. M. Ryan (2006), DRAM, a p53-induced modulator of autophagy, is critical for apoptosis, Cell 126, 121-134 https://doi.org/10.1016/j.cell.2006.05.034
  13. Kastan, M. B., Q. Zhan, W. S. e1-Deiry, F. Carrier, T. Jacks, W. V. Walsh, B. S. Plunkett, B. Vogelstein, and A. J. Fomace Jr (1992), A mammalian cell cycle checkpoint pathway uti1izing p53 and GADD45 is defective in ataxia-telangiectasia, Cell 71, 587-597 https://doi.org/10.1016/0092-8674(92)90593-2
  14. Owen-Schaub, L. B., W. Zhang, J. C. Cusack, L. S. Angelo, S. M. Santee, T. Fujiwara, J. A. Roth, A. B. Deisseroth, W. W. Zhang, and E. Kruzel (1995), Wild-type human p53 and a temperature-sensitive mutant induce Fas/APO-1 expression, Mol. Cell Biol. 15, 3032-3040 https://doi.org/10.1128/MCB.15.6.3032
  15. Miyashita, T. and J. C. Reed (1995), Tumor suppressor p53 is a direct transcriptional activator of the human bax gene, Cell 80, 293-299 https://doi.org/10.1016/0092-8674(95)90412-3
  16. Budhram-Mahadeo, V., P. J. Morris, M. D. Smith, C. A. Midgley, L. M. Boxer, and D. S. Latchman (1999), p53 suppresses the activation of the Bcl-2 promoter by the Bm-3a POU fami1y transcription factor, J. Biol. Chem. 274, 15237-15244 https://doi.org/10.1074/jbc.274.21.15237
  17. Oda, E., R. Ohki, H. Murasawa, J. Nemoto, T. Shibue, T. Yamashita, T. Tokino, T. Taniguchi, and N. Tanaka (2000), Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis, Science 288, 1053-1058 https://doi.org/10.1126/science.288.5468.1053
  18. Nakano, K. and K. H. Vousden (2001), PUMA, a novel proapoptotic gene, is induced by p53, Mol. Cell 7, 683-694 https://doi.org/10.1016/S1097-2765(01)00214-3
  19. Mihara, M., S. Erster, A. Zaika, O. Petrenko, T. Chittenden, P. Pancoska, and U. M. Moll (2003), p53 has a direct apoptogenic role at the mitochondria, Mol. Cell 11, 577-590 https://doi.org/10.1016/S1097-2765(03)00050-9
  20. Hershko, A. and A. Ciechanover (1992), The ubiquitin system for protein degradation, Annu. Rev. Biochem. 61, 761-807 https://doi.org/10.1146/annurev.bi.61.070192.003553
  21. Hochstrasser, M. (1996), Ubiquitin-depcndent protein degradation, Annu. Rev. Genet. 30, 405-439 https://doi.org/10.1146/annurev.genet.30.1.405
  22. Chau, V., J. W. Tobias, A. Bachmair, D. Marriott, D. J. Ecker, D. K. Gonda and A. Varshavsky (1989), A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein, Science 243, 1576-1583 https://doi.org/10.1126/science.2538923
  23. Terrell, J., S. Shih, R. Dunn, and L. Hicke (1998), A fuction for monoubiquitination in the intemalization of a G protein-coupled receptor, Mol. Cell 1, 193-202 https://doi.org/10.1016/S1097-2765(00)80020-9
  24. Murray, A. (1995), Cyclin ubiquitination: the destructive end of mitosis, Cell 81, 149-152 https://doi.org/10.1016/0092-8674(95)90322-4
  25. Weake, V. M. and J. L. Workman (2008), Histone ubiquitination: triggering gene activity, Mol. Cell 29, 653-663 https://doi.org/10.1016/j.molcel.2008.02.014
  26. Scheffner, M., B. A. Wemess, J. M. Huibregtse, A. J. Levine, and P. M. Howley (1990), The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53, Cell 63, 1129-1136 https://doi.org/10.1016/0092-8674(90)90409-8
  27. Fakharzadeh, S. S., S. P. Trusko, and D. L. George (1991), Tumorigenic potential associated with enhanced expression of a gene that ís amplified in a mouse tumor cell line, EMBO J. 10, 1565-1569
  28. Courjal, F., M. Cuny, C. Rodriguez, G. Louason, P. Speiser, D. Katsaros, M. M. Tanner, R. Zeillinger, and C. Theillet (1996), DNA amplifications at 20q13 and MDM2 define distinct subsets of evolved breast and ovarian tumours, Br. J. Cancer 74, 1984-1989 https://doi.org/10.1038/bjc.1996.664
  29. Jones, S. N., A. E. Roe, L. A. Donehower, and A. Bradley (1995), Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53, Nature 378, 206-208 https://doi.org/10.1038/378206a0
  30. Montes, de Oca Luna R., D. S. Wagner, and G. Lozano (1995), Rescue of early embryonic lethalíty in mdm2-deficient mice by deletion of p53, Nature 378, 203-206 https://doi.org/10.1038/378203a0
  31. Itahana, K., H. Mao, A. Jin, Y. Itahana, H. V. Clegg, K. P. Bhat, V. L. Godfrey, G. I. Evan, and Y. Zhang (2007), Targeted inactivation of Mdm2 RING finger E3 ubiquitin ligase actívity in the mouse reveals mechanistíc insights into p53 regulation, Cancer Cell 12, 355-366 https://doi.org/10.1016/j.ccr.2007.09.007
  32. Zhang, Y., Y. Xiong, and W. G. Yarbrough (1998), ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways, Cell 92, 725-734 https://doi.org/10.1016/S0092-8674(00)81401-4
  33. Li, M., D. Chen, A. Shiloh, J. Luo, A. Y. Nikolaev, J. Qin, and W. Gu (2002), Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization, Nature 416, 648-653 https://doi.org/10.1038/nature737
  34. Mayo, L. D. and D. B. Donner (2001), A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus, Proc. Natl. Acad. Sci. USA 98, 11598-11603 https://doi.org/10.1073/pnas.181181198
  35. Siliciano, J. D., C. E. Canman, Y. Taya, K. Sakaguchi, E. Appella, and M. B. Kastan (1997), DNA damage induces phosphorylation of the amino tenninus of p53, Genes Dev. 11, 3471-3481 https://doi.org/10.1101/gad.11.24.3471
  36. Shieh, S. Y., M. Ikeda, Y. Taya, and C. Prives (1997), DNA damage-induced phosphory lation of p53 alleviates inhibition by MDM2, Cell 91, 325-334 https://doi.org/10.1016/S0092-8674(00)80416-X
  37. O'Connor, M. J., H. Zimmerrnann, S. Nielsen, H. U. Bemard, and T. Kouzarides (1999), Characterization of an EIA-CBP intεraction defines a novel transcriptional adapter motif (TRAM) in CBP/p300, J. Virol. 73, 3574-3581
  38. Honda, R. and H. Yasuda (1999), Association of p19 (ARF) with Mdm2 inhibits ubiquitin ligase acivity of Mdm2 for tumor suppressor p53, EMBO J. 18, 22-27 https://doi.org/10.1093/emboj/18.1.22
  39. Colaluca, I. N., D. Tosoni, P. Nuciforo, F. Senic-Matuglia, V. Galimberti, G. Viale, S‘ Pece, and P. P. di Fiore (2008), NUMB controls p53 tumour suppressor activity, Nature 451, 76-80 https://doi.org/10.1038/nature06412
  40. Vassilev, L. T., B. T. Vu, B. Graves, D. Carvajal, F. Podlaski, Z. Filipovic, N. Kong, U. Kammlott, C. Lukacs, C. Klein, N. Fotouhi and E. A. Liu (2004), In vivo activation of the p53 pathway by smallmolecule antagonists of MDM2, Science 303, 844-848 https://doi.org/10.1126/science.1092472
  41. Kojima, K., M. Konopleva, T. McQueen, S. O ’Brien, W. Plunkett and M. Andreeff (2006), Mdm2 inhibitor Nutlin-3a induces p53-mediated apoptosis by transcriptíondependent and transcription-independent mechanisms and may overcome Atm-mediated resistance to tludarabine in chronic lymphocytic leukemia, Blood 108, 993-1000 https://doi.org/10.1182/blood-2005-12-5148
  42. Wu, X., J. H. Bayle, D. Olson, and A. J. Levine (1993), The p53-mdm-2 autoregulatory feedback loop, Genes Dev. 7, 1126-1132 https://doi.org/10.1101/gad.7.7a.1126
  43. Joseph, T. W., A. Zaika, and U. M. Moll (2003), Nuclear and cytoplasmic degradation of endogenous p53 and HDM2 occurs during down-regulation of the p53 response after multiple types of DNA damage, FASEB J. 17, 1622-1630 https://doi.org/10.1096/fj.02-0931com
  44. Bond, G. L., K. M. Hirshfield, T. Kirchhoff, G. Alexe, E. E. Bond, H. Robins, F. Bartel, H. Taubert, P. Wuerl, W. Hait, D. Toppmeyer, K. Offit, and A. J. Levine (2006), MDM2 SNP 309 accelerates tumor forrnation in a gender-specific and horrnone-dependent manner, Cancer Res. 66, 5104-5110 https://doi.org/10.1158/0008-5472.CAN-06-0180
  45. Hu, W., Z. Feng, L. Ma, J. Wagner, J. J. Rice, G. Stolovitzky, and A. J. Levine (2007), A Single nucleotide polymorphism in the MDM2 gene disrupts the oscillation of p53 and MDM2 levels in cells, Cancer Res. 67, 2757-2865 https://doi.org/10.1158/0008-5472.CAN-06-2656
  46. Paulin, F. E., M. O’Neill, G. McGregor, A. Cassidy, A. Ashfield, C. W. Ali, A. J. Munro, L. Baker, C. A. Purdie, D. P. Lane, and A. M. Thompson (2008), MDM2 SNP309 is associated with high grade node positive breast tumours and is in linkage disequilibrium with a novel MDM2 intron 1 polymorphism, BMC Cancer. 8, 281 https://doi.org/10.1186/1471-2407-8-281
  47. Leng, R. P., Y. Lin, W. Ma, H. Wu, B. Lemmers, S. Chung, J. M. Parant, G. Lozano, R. Hakem, and S. Benchimol (2003), Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation, Cell 112, 779-791 https://doi.org/10.1016/S0092-8674(03)00193-4
  48. Doman, D., I. Wertz, H. Shimizu, D. Amott, G. D. Frantz, P. Dowd, K. O ’Rourke, H. Koeppen and V. M. Dixit (2004), The ubiquitin ligase COPI is a critical negative regulator of p53, Nature 429, 86-92 https://doi.org/10.1038/nature02514
  49. Osterlund, M. T., L. H. Ang, and X. W. Deng (1999), The role of COP1 in repression of Arabidopsis photomorphogenic development, Trends Cell Biol. 9, 113-118 https://doi.org/10.1016/S0962-8924(99)01499-3
  50. Kato, S., J. Ding, E. Pisck, U. S. Jhala, and K. Du (2008), COP1 Functions as a FoxO1 Ubiquitin E3 Ligase to Regulate FoxO1-mediated Gene Expression, J. Biol. Chem. 283, 35464-35473 https://doi.org/10.1074/jbc.M801011200
  51. Doman, D., H. Shimizu, A. Mah, T. Dudhela, M. Eby, KO’rourke, S. Seshagiri, and V. M. Dixit (2006), ATM engages autodegradation of the E3 ubiquitin ligase COP1 after DNA damage, Science 313, 1122-1126 https://doi.org/10.1126/science.1127335
  52. Sheng, Y., R. C. Laister, A. Lemak, B. Wu, E. Tai, S. Duan, J. Lukin, M. Sunnerhagen, S. Srisailam, M. Karra, S. Benchimol, and C. Arrowsrnith (2008), Molecular basis of Pirh2-mediated p53 ubiquitylation, Nat. Struct. Mol. Biol. 15, 1334-1342 https://doi.org/10.1038/nsmb.1521
  53. Hattori, T.,T. Isobe, K. Abe, H. Kikuchi, K. Kitagawa, T. Oda, C. Uchida, and M. Kitagawa (2007), Pirh2 promotes ubiquitin-dependent degradation of the cyclindependent kinase inhibitor p27Kip1, Cancer Res. 67, 10789-10795 https://doi.org/10.1158/0008-5472.CAN-07-2033
  54. Duan, S., Z. Yao, D. Hou, Z. Wu, W. G. Zhu and M. Wu (2007), Phosphorylation of Pirh2 by calmodulindependent kinase II impairs its ability to ubiquitinate p53, EMBO J. 26, 3062-3074 https://doi.org/10.1038/sj.emboj.7601749
  55. Brooks, C. L. and W. Gu (2006), p53 ubiquitination: Mdm2 and beyond, Mol. Cell 21, 307-315 https://doi.org/10.1016/j.molcel.2006.01.020
  56. Freedman, D. A. and A. J. Levine (1998), Nuclear export is required for degradation of endogenous p53 by MDM2 and human papillomavirus E6, Mol. Cell Biol. 18, 7288-7293
  57. Chen, D., N. Kon, M. Li, W. Zhang, J. Qin, and W. Gu (2005), ARF-BP1/Mule is a critical mediator of the ARF tumor suppressor, Cell 121, 1071-1083 https://doi.org/10.1016/j.cell.2005.03.037
  58. Zhong, Q., W. Gao, F. Du, and X. Wang (2005), Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis, Cell 121, 1085-1095 https://doi.org/10.1016/j.cell.2005.06.009
  59. Grossman, S. R., M. Perez, A. L. Kung, M. Joseph, C. Mansur, Z. X. Xiao, S. Kumar, P. M. Howley, and D. M. Livingston (1998), p300/MDM2 complexes participate in MDM2-mediated p53 degradation, Mol. Cell 2, 405-415 https://doi.org/10.1016/S1097-2765(00)80140-9
  60. Grossman, S. R., M. E. Deato, C. Brignone H.M. Chan, A. L. Kung, H. Tagami, Y. Nakatani, and D. M. Livingston (2003), Polyubiquitination of p53 by a ubiquitin ligase activity of p300, Science 300, 342-344 https://doi.org/10.1126/science.1080386
  61. Yamasaki, S., N. Yagishita, T. Sasaki, M. Nakazawa, Y. Kato, T. Yamadera, E. Bae, S. Toriyarna, R. Ikeda, L. Zhang, K. Fujitani, E. Yoo, K. Tsuchimochi, T. Ohta, N. Araya, H. Fujita, S. Aratani, K. Eguchi, S. Komiya, I. Maruyama, N. Higashi, M. Sato, H. Senoo, T. Ochi, S. Yokoyama, T. Amano, J. Kim, S. Gay, A. Fukamizu, K. Nishioka, K. Tanaka, and T. Nakajima (2007), Cytoplasmic destruction of p53 by the endoplasmic reticulum-resident ubiquuitin ligase Synoviolin, EMBO J. 26, 113-122 https://doi.org/10.1038/sj.emboj.7601490
  62. Yang, W., L. M. Rozan, E. R. McDonald 3rd, A. Navaraj, J. J. Liu, E. M. Matthew, W. Wang, D. T. Dicker and W. S. EI-Deiry (2007), CARPs are ubiquitin ligases that promote MDM2-independent p53 and phospho-p53ser20 degradation. J. Biol. Chem. 282, 3273-3281 https://doi.org/10.1074/jbc.M610793200
  63. Boutell, C. and R. D. Everett (2003), The herpes simplex virus type 1 (HSV-1) regulatory protein ICP0 interacts with and ubiquitinates p53, J. Biol. Chem. 278, 36596-36602 https://doi.org/10.1074/jbc.M300776200
  64. Rajendra, R., D. Malegaonkar, P. Pungaliya, H. Marshall, Z. Rasheed, J. Brownell, L. F. Liu, S. Lutzker, A. Saleem, and E. H. Rubin (2004), Topors functions as and E3 ubiquitin ligase with specific E2 enzymes and ubiquitianates p 53, J. Biol. Chem. 279, 36440-36444 https://doi.org/10.1074/jbc.C400300200
  65. Boddy, M. N., P. S. Freemont, and K. L. Borden (1994), The p53-associated protein MDM2 contains a newly characterized zinc-binding domain called the RING finger, Trends Biochem. Sci. 19, 198-199 https://doi.org/10.1016/0968-0004(94)90020-5
  66. Roth, J., M. Dobbelstein, D. A. Freedman, T. Shenk, and A. J. Levine (1998), Nucleo-cytoplasrnic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein, EMBO J. 17, 554-564 https://doi.org/10.1093/emboj/17.2.554
  67. Barak, Y., T. Juven, R. Haffuer, and M. Oren (1993), Mdm2 expression is induced by wild type p53 activity, EMBO J. 12, 461-468
  68. Buschmann, T., S. Y. Fuchs, C. G. Lee, Z. Q. Pan, and Z. Ronai (2000), SUMO-1 modification of Mdm2 prevents its self-ubiquitination and increases Mdm2 ability to ubiquitinate p53, Cell 101, 753-762 https://doi.org/10.1016/S0092-8674(00)80887-9
  69. Khosravi, R., R. Maya, T. Cottlieb, M. Oren, Y. Shiloh, and D. Shkedy (1999), Rapid ATM-dependent phosphorylation of MDM2 precedes p53 accumulation in response to DNA damage, Proc. Natl. Acad. Sci. USA 96, 14973-14977 https://doi.org/10.1073/pnas.96.26.14973
  70. Dias, S. S., D. M. Milne, and D. W. Meek (2006), c-Abl phosphorylates Hdm2 at tyrosine 276 in response to DNA damage and regulates interaction with ARF, Oncogene 25, 6666-6671 https://doi.org/10.1038/sj.onc.1209671
  71. Pan, Y. and J. Chen (2003), MDM2 promotes ubiquitination and degradation of MDMX, Mol. Cell Biol. 23, 5113-5121 https://doi.org/10.1128/MCB.23.15.5113-5121.2003
  72. Foo, R. S., L. K. Chan, R. N. Kitsis, and M. R. Bennett (2007), Ubiquitination and degradation of the anti-apoptotic protein ARC by MDM2, J. Biol. Chem. 282, 5529-5535 https://doi.org/10.1074/jbc.M609046200
  73. Ofir-Rosenfeld, Y., K. Boggs, D. Michael, M. B. Kastan, and M. Oren, (2008), Mdm2 regulates p53 mRNA translation through inhibitory interactions with ribosomal protein L26, Mol. Cell 32, 180-189 https://doi.org/10.1016/j.molcel.2008.08.031
  74. Yang, J. Y., C. S. Zong, W. Xia, H. Yamaguchi, Q. Ding, X. Xie, J. Y. Lang, C. C. Lai, C. J. Chang, W. C. Huang, H. Huang, H. P. Kuo, D. F. Lee, L. Y. Li, H. C. Lien, X. Cheng, K. J. Chang, C. D. Hsiao, F. J. Tsai, C. H. Tsai, A. A. Sahin, W. J. Muller, G. B. Mills, D. Yu, G. N. Hortobagyi, and M. C. Hung (2008), ERK promotes tumorigenesis by inhibiting FOXO3a via MDM2-mediated degradation, Nat. Cell Biol. 10, 138-148 https://doi.org/10.1038/ncb1676
  75. Logan, I. R., V. Sapountzi, L. Gaughan, D. E. Neal, and C. N. Robson (2004), Control of human PIRH2 protein stability: involvement of TIP60 and the proteosome, J. Biol. Chem. 279, 11696-11704 https://doi.org/10.1074/jbc.M312712200
  76. I. R. Logan, L. Gaughan, S. R McCracken, V. Sapountzi, H. Y. Leung, and C. N. Robson (2006), Human PIRH2 enhances androgen receptor signaling through inhibition of histone deacetylase 1 and is overexpressed in prostate cancer, Mol. Cell Biol. 26, 6502-6510 https://doi.org/10.1128/MCB.00147-06
  77. Von Amim, A. G. and X. W. Deng (1993), Ring finger motif of Arabidopsis thaliana COP1 defmes a new class of zinc-binding domain, J. Biol. Chem. 268, 19626-19631
  78. Stacey, M. G., S. N. Hicks, and A. G. von Amim (1999), Discrete domains mediate the light-responsive nuclear and cytoplasmic localization of Arabidopsis COP1, Plant Cell 11, 349-364 https://doi.org/10.1105/tpc.11.3.349
  79. Hou, Y., A. G. von Amim, and X. W. Deng (1993), A new class of Arabidopsis constitutive photomorphogenic genes involved in regulating cotyledon development, Plant Cell 5, 329-339 https://doi.org/10.1105/tpc.5.3.329
  80. Ogryzko, V. V., R. L. Schiltz, V. Russanova, B. H. Howard, and Y. Nakatan (1996), The transcriptional coactivators p300 and CBP are histone acetyltransferases, Cell 87, 953-959 https://doi.org/10.1016/S0092-8674(00)82001-2
  81. McDonald, E. R. 3rd and W. S. EI-Deiry (2004), Suppression of caspase-8- and -10-associated RlNG proteins rεsults in sensitization to death ligands and inhibition of tumor cell growth, Proc. Natl. Acad. Sci. USA 101, 6170-6175 https://doi.org/10.1073/pnas.0307459101
  82. Liao W, Q. Xiao, V. Tchikov, K. Fujita, W. Yang, S. Wincovitch, S. Garfield, D. Conze, W. S. EI-Deiry, S. Schutez, and S. M. Srinivasula (2008), CARP-2 is an endosome-associated ubiquitin ligase for RIP and regulates TNF-induced NF-kappaB activation, Curr. Biol. 18, 641-649 https://doi.org/10.1016/j.cub.2008.04.017
  83. Moriuchi, H., M. Moriuchi, and J. I. Cohen (1994), The RING finger domain of the varicella-zoster virus open reading frame 61 protein is required for its transregulatory functions, Virol. 205, 238-246 https://doi.org/10.1006/viro.1994.1639
  84. Mullen, M. A., D. M. Ciufo, and G. S. Hayward (1994), Mapping of intracellular localization domains and evidence for colocalization interactions between the IE 110 and IE175 nuclear transactivator proteins of herpes simplex virus, J. Virol. 68, 3250-3266
  85. Canning, M., C. Boutell, J. Parkinson, and R. D. Everett (2004), A RlNG finger ubiquitin ligase is protected from autocatalyzed ubiquitination and degradation by binding to ubiquitin-specific protease USP7, J. Biol. Chem. 279, 38160-38168 https://doi.org/10.1074/jbc.M402885200
  86. Diao, L., B. Zhang, J. Fan, X. Gao, S. Sun, K. Yang, D. Xin, N. Jin, Y. Geng, and C. Wang (2005), Herpes virus proteins ICP0 and BICP0 can activate NF-kappaB by catalyzing IkappaBalpha ubiquitination, Cell Signal. 17, 217-229 https://doi.org/10.1016/j.cellsig.2004.07.003
  87. Jr Haluska, P., A. Saleem, Z. Rasheed, F. Ahrned, E. W. Su, L. F. Liu, and E. H. Rubin (1999), Interaction between human topoisomerase I and a novel RING finger/ arginine-serine protein, Nucleic Acids Res. 27, 2538-2544 https://doi.org/10.1093/nar/27.12.2538
  88. Guan, B., P. Pungaliya, X. Li, C. Uquillas, L. N. Mutton, E. H. Rubin, and C. J. Bieberich (2008), Ubiquitination by TOPORS regulates the prostate tumor suppressor NKX3.1, J. Biol. Chem. 283, 4834-4840 https://doi.org/10.1074/jbc.M708630200
  89. Shaulsky, G., A. Ben-Ze'ev, and V. Rotter (1990), Subcellular distribution of the p53 protein during the cell cycle of Balb/c 3T3 cells, Olcogene 5, 1707-1711
  90. Shaulsky, G., N. Goldfinger M. S. Tosky, A. J. Levine, and V. Rotter (1991), Nuclear localization is essential for the activity of p53 protein, Oncogene 6, 2055-2065
  91. Giannakakou, P., D. L. Sackett, Y. Ward, K. R. Webster, M. V. Blagosklonny, and T. Fojo (2000), p53 is associated with cellular microtubules and is transported to the nucleus by dynein, Nat. Cell Biol. 2, 709-719 https://doi.org/10.1038/35036335
  92. Shaulsky, G., N. Goldfinger, A. Ben-Ze' ev, and V. Rotter (1990), Nuclear accumulation of p53 protein is mediated by several nuclear localization signals and plays a role in tumorigenesis, Mol. Cell Biol. 10, 6565-6577 https://doi.org/10.1128/MCB.10.12.6565
  93. Middler, G., K. Zerf, S. Jenovai, A. Thulig, M. Tschodrich-Rotter, U. Kubitscheck, and R. Peters (1997), The tumor suppressor p53 is subject to both nuclear import and export, and both are fast, energy-deendent and lectin-inhibited, Oncogene 14, 1407-1417 https://doi.org/10.1038/sj.onc.1200949
  94. Stommel, J. M., N. D. Marchenko, G. S. Jimenez, U. M. Moll, T. J. Hope, and G. M. Wahl (1999), A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking, EMBO J. 18, 1660-1672 https://doi.org/10.1093/emboj/18.6.1660
  95. Lohrum, M. A., D. B. Woods, R. L. Ludwig, E. Balint, and K. H. Vousden (2001), C-terminal ubiquitination of p53 contributes to nuclear export, Mol. Cell Biol. 21, 8521-8532 https://doi.org/10.1128/MCB.21.24.8521-8532.2001
  96. Geyer, R. K., Z. K. Yu, and C. G. Maki (2000), The MDM2 RING-finger domain is required to promote p53 nuclear export, Nat. Cell Biol. 2, 569-573 https://doi.org/10.1038/35023507
  97. Carter, S., O. Bischof, A. Dejean, and K. H. Vousden (2007), C-terminal modifications regulate MDM2 dissociation and nuclear export of p53, Nat. Cell Biol. 9, 428-435 https://doi.org/10.1038/ncb1562
  98. Li, M., C. L. Brooks F. Wu-Baer, D. Chen, R. Baer, and W. Gu (2003), Mono-versus polyubiquitination: differential control of p53 fate by Mdm2, Science 302, 1972-1975 https://doi.org/10.1126/science.1091362
  99. Thrower, J. S., L. Hoffman, M. Rechsteiner, and C. M. Pickart (2000), Recognition of the polyubiquitin proteolytic signal, EMBO J. 19, 94-102 https://doi.org/10.1093/emboj/19.1.94
  100. Laine, A. and Z. Ronai (2007), Regulation of p53 localization and transcription by the HECT domain E3 ligase WWP1, Oncogene 26, 1477-1483 https://doi.org/10.1038/sj.onc.1209924
  101. Laine, A., I. Topisirovic, D. Zhai, J. C. Reed, K. L. Borden, and Z. Ronai (2006), Regulation of p53 localization and activity by Ubc13, Mol. Cell Biol. 26, 8901-8913 https://doi.org/10.1128/MCB.01156-06
  102. Kruse, J. P. and W. Gu (2008), MSL2 promotes MDM2 independent cytoplasrnic localization of p53, Epub ahead of print 2008 Nov 25
  103. Andrews, P., Y. J. He, and Y. Xiong (2006), Cytoplasmic localized ubiquitin ligase cullin 7 binds to p53 and promotes cell growth by antagonizing p53 function, Oncogene 25, 4534-4548 https://doi.org/10.1038/sj.onc.1209490
  104. Nikolaev, A. Y., M. Li, N. Puskas, J. Qin, and W. Gu (2003), Parc: a cytoplasmic anchor for p53, Cell 112, 29-40 https://doi.org/10.1016/S0092-8674(02)01255-2
  105. Oh, W., E. W. Lee, Y. H. Sung, M. R. Yang, J. Ghim, H. W. Lee, and J. Song (2006), Jabl induces the cytoplasmic localization and degradation of p53 in coordination with Hdm2, J. Biol. chem. 281, 17457-17465 https://doi.org/10.1074/jbc.M601857200
  106. Marchenko, N. D., S. Wolff, S. Erster, K. Becker, and U. M. Moll (2007), Monoubiquitylation promotes rnitochondrial p53 translocation, EMBO J. 26, 923-934 https://doi.org/10.1038/sj.emboj.7601560
  107. Li, M., D. Chen, A. Shiloh, J. Luo, A. Y. Nikolaev, J. Qin, and W. Gu (2002), Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization, Nature 416, 648-653 https://doi.org/10.1038/nature737
  108. Mayr, G. A., M. Reed, P. Wang, Y. Wang, J. F. Schweds, and P. Tegtmeyer (1995), Serine phosphorylation in the NH2 terrninus of p53 facilitates transactivation, Cancer Res. 55, 2410-2417
  109. Barlev, N. A., L. Liu, N. H. Chehab, K. Mansfield, K. G. Harris, T. D. Halazonetis, and S. L. Berger (2001), Acetylation of p53 activates transcription through recruitment of coactivators/histone acetyltransferases, Mol. Cell 8, 1243-1254 https://doi.org/10.1016/S1097-2765(01)00414-2
  110. Das, S., L. Raj, B. Zhao, Y. Kimura, A. Bemstein, S. A. Aaronson, and S. W. Lee (2007), Hzf Determines cell survival upon genotoxic stress by modulating p53 transactivation, Cell 130, 624-637 https://doi.org/10.1016/j.cell.2007.06.013
  111. Tanaka, T., S. Ohkubo, I. Tatsuno, and C. Prives (2007), hCAS/CSEIL associates with chromatin and regulates expression of select p53 target genes, Cell 130, 638-650 https://doi.org/10.1016/j.cell.2007.08.001
  112. Gu, W. and R. G. Roeder (1997), Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90, 595-606 https://doi.org/10.1016/S0092-8674(00)80521-8
  113. Lain, S., J. J. Hollick, J. Campbell, O. D. Staples, M. Higgins, M. Aoubala, A. McCarthy, V. Appleyard, K. E. Murray, L. Baker, A. Thompson, J. Mathers, S. J. Holland, M. J. Stark, G. Pass, J. Woods, D. P. Lane, and N. J. Westwood (2008), Discovery, in vivo activity, and mechanism of action of a smallmolecule p53 activator, Cancer Cell 13, 454-463 https://doi.org/10.1016/j.ccr.2008.03.004
  114. Liu, L., D. M. Scolnick, R. C. Trievel, H. B. Zhang, R. Marmorstein, T. D. Halazonetis, and S. L. Berger (1999), p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage, Mol. Cell Biol. 19, 1202-1209
  115. Le Cam, L., L. K. Linares, C. Paul, E. Julien, M. Lacroix, E. Hatchi, R. Triboulet, G. Bossis, A. Shmueli, M. S. Rodriguez, O. Coux, and C. Sardet (2006), E4F1 is an atypical ubiquitin ligase that modulates p53 effector functions independently of degradation, Cell 127, 775-788 https://doi.org/10.1016/j.cell.2006.09.031
  116. Sykes, S. M., H. S. Mellert, M. A. Holbert, K. Li, R. Marmorstein, W. S. Lane, and S. B. McMahon (2006), Acetylation of the p53 DNA-binding domain regulates apoptosis induction, Mol. Cell 24, 841-851 https://doi.org/10.1016/j.molcel.2006.11.026
  117. Tang, Y., W. Zhao, Y. Chen, Y. Zhao, and W. Gu (2008), Acetylation is indispensable for p53 activation, Cell 133, 612-626 https://doi.org/10.1016/j.cell.2008.03.025
  118. Xu, P. and J. Peng (2008), Characterization of polyubiquitin chain structure by middle-down mass spectrometry, Anal. Chem. 80, 3438-3444 https://doi.org/10.1021/ac800016w
  119. Chan, W. M., M. C. Mak, T. K. Fung, A. Lau, W. Y. Siu, and R. Y. Poon (2006), Uboquitnation of p53 at multiple sites in the DNA-binding domain, Mol. Cancer Res. 4, 15-25 https://doi.org/10.1158/1541-7786.MCR-05-0097