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Abstract
We prove a central limit theorem for the negatively associated random variables in a Hilbert space and extend
this result to the linear process generated by negatively associated random variables in a Hilbert space. Our result
implies an extension of the central limit theorem for the linear process in a real space under negative association
to a simplest case of infinite dimensional Hilbert space.
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1. Introduction

Let H be a separable real Hilbert space with the norm || - ||z generated by an inner product, < -,- >
and let {e;, k > 1} be an orthonormal basis in H. Let L{H) be the class of bounded linear operators
from H to H and denote by || - || its usual norm. Let {&, k € Z} be a strictly stationary sequence of
H-valued random variables and {a;,k € Z} be a sequence of bounded operators in L(H). We define
the stationary linear process in a Hilbert space by X; = 3.7 a;é-;, k € Z.

Linear processes in a Hilbert space play an important role in global statistics for continuous pro-
cesses (¢f. Bosq, 2000). The sequence {X;,k € Z} of H-valued linear processes is a natural ex-
tension of the multivariate linear processes (Brockwell and Davis, 1987, Chapter 11). We define
S» = 2p-y Xi. Notice that if Z;O:o”aj“L(H) < oo and {&.k € Z} is a sequence of H-valued i.i.d.
centered random variables, then the series S, converges almost surely (see Araujo and Gine, 1980,
Chapter 3.2) and the H-valued linear process X satisfies the central limit theorem (Bosq, 2000).

A finite family {&;, 1 < i < n} of real-valued random variables is said to be associated if for any
coordinatewise increasing functions f,g : R* — R, Cov(f{&y,...,&). 81, ...,&)) 2 0 whenever
this covariance exists. A finite family {&,1 < i < n} is said to be negatively associated if for any
disjoint subsets A, B C {1,...,n} and any real coordinatewise nondecreasing functions f on RA,
g on RE, Cov(f(é1,k € A), g(&. k € B)) < 0 whenever the covariance exists. An infinite family of
random variables is associated(negatively associated) if every finite subfamily is associated(negatively
associated). These concepts of dependence were introduced by Esary et al. (1967) and Joag-Dev and
Proschan {1983), respectively.

Newman (1984) studied the central limit theorem for strictly stationary negatively associated se-
quence and Matula (1992) derived the strong law of large numbers for negatively associated sequence.

As Burton ef al. (1986) introduced the definition of weak association for random vectors we can
give the definition of negative association for random vectors with values in R7: Let {£1,...,&njbe 2
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sequence of R?-valued random vectors. {£1, ..., &,) is said to be negatively associated if Cov{(f(&, k €
A), g(ér, k € B)) < 0 for any disjoint subsets A, B c {1,...,n} and for any nondecreasing functions f
on R, ¢ on R¥? such that the covariance exists and |A| is the cardinality of A.

Burton ef al. (1986) also extended the concept of weak association for random vectors with values
in R to random vectors with values in a real separable Hilbert space. Similarly, we can also introduce
the concept of negative association in a Hilbert space as follows : Let {£,,n > 1) be a sequence of
random variables taking values in a Hilbert space (H, < -,- >). {&;,,n > 1} is said to be negatively
associated if, for some orthonormal basis {¢;,k > 1} in H and for any d > 1 the d-dimensional
sequence (< &, e1 >,...,< &, e4 >), i > 1 is negatively associated.

Burton et al. (1986) proved an invariance principle for weakly associated random variable in a
Hilbert space. Kim and Ko (2008) proved a central limit theorem for linear process generated by
associated random variables in a Hilbert space. Ko et al. (2009) showed the almost sure convergence
for negatively associated random variables in a Hilbert space and Kim et al. (2008) also obtained the
almost sure convergence for a linear process generated by negatively associated random variables in
a Hilbert space.

In Section 2 we study the maximal inequality and the central limit theorem for negatively associ-
ated random variables in a Hilbert space and in Section 3 we will prove the central limit theorem for
a strictly stationary linear process generated by H-valued negatively associated random variables by
applying this result.

Our result implies the following central limit theorem for the linear process generated by nega-
tively associated random variables.

Theorem 1. (Ko et al., 2006) Ler {&, k € Z} be a strictly stationary sequence of centered and
negatively associated random variables having finite second moment and let {a;, k € 7} be a sequence

of numbers such that
Z |a ]| < 00,
=0

Define X = Z‘;‘;O aii_jk€ZandS, = };_, Xy and assume

o? = E& +2 ) E£) < oo,
=2

2
1 n ) o
i >x5 N[O, [Z a,-) 0'2] (See Kim et al., 2008),
= =0
where N is a Gaussian random variable with variance (33 a,)*a”.

2. Preliminaries
In the proof of Lemma 4 in Matula (1992) we have:

Lemma 1. (Matula, 1992) Ler {Y,,n > 1} be a sequence of negatively associated random variables
with finite second moments and zero means. Then

k 2 n
: 2
E[gg 2 Y,] < Z:‘EY, : @.1)
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Lemma 2. (Matula, 1992) Ler {Y|,...,Y,,} be a sequence of negatively associated random vari-
ables with E(Yl.z) <owand EY; =0,i>21andletS,, =Y+ - -+ Y, Then

E(max($]...., |s,,,|))2 <4 i E(Y?). 2.2)
i=1

Lemma 3. (Ko et al., 2009) Let {£,,n > 1} be a negatively associated sequence of H-valued ran-
dom variables with E&, = 0 and E||&,||”> < o0, n > 1. Then, we have

k
Dé
=1

From the Newman’s (1984) central limit theorem for negatively associated sequence we can obtain
the following central limit theorem for stationary negatively associated random vectors by means of
the simple device due to Cramer Wold technique (c.f. Billingsley, 1968).

E max
1<k<n

2 n
<4 > ElglP. 2.3)
i=1

Theorem 2. Let {£;,i > 1) be a strictly stationary negatively associated sequence of R%-valued
random vectors with E¢; = O and E||&||* < . If

o = Ell&il* +2

d
E(&1;6)) < oo, 2.4)
=1

o0
=2

then
ot Z &5 NO,D), @2.5)
i=1
where N is a Gaussian random vector with covariance matrix T = [0 il
o1 = E€uér)) + i [EGuéip + En)]- 2.6)
i=2

Theorem 3. (Ko, 2006) Ler (&, k € Z) be a strictly stationary negatively associated sequence of
R¢-valued random vectors with E&, = O and E|l&1| < oo and let {A;} be a sequence of matrix such
that

D<o, Y A;# O
j=0 j=0

where for any d X d matrix A = (a;;), ||Al| = ‘;:1 Zf’zl la;j| and Qg denotes the d x d zero matrix.
Define X;. an R?-valued linear process of the form X = Z;io A If (2.4) holds, then

1 © D
— > Xy - NO,T),
Vi &

where N is a Gaussian random vector with covariance matrix T = (ZR0AN TEE0A ;) and T is
defined in (2.6).
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3. Main Results

Theorem 4. Let (¢, i > 1} be a strictly stationary negatively associated sequence of H-valued cen-
tered random variables. If E||£,|* < oo and

o7 = ElIP +2 ) B(< &, & >) < oo, 3.
i=2
then
Z?:]‘fi D
——\/ﬁ - N, D), 3.2)

where N is a Gaussian random variable with value in a Hilbert space and with covariance operator
I" satisfying

e, e)) = E(< &1, ex >< &1, ¢, >) + Z [E(< &1, e >< &, 1 >)
=2

+E(<§1,e1 ><§i, ey >)], kil=1,2,....

Proof: Let (e;) be the orthonormal basis with respect to which the sequence {¢ i» J = 1} is negatively
associated in H. For M > 1, let Pj be the projection on the subspace generated by ey, ...,ey and

Oy =1-Py.
By stationarity and E||&,||> < o we have

n Y EIEIR =0T Y EY (<& e > =E Y (<é e >)
i=1 i=1 k=1 k=1
= Ellg1l)* < co.

Hence, for any € > 0 there exists My such that

n! Z ElQuéil = n! Z E i (<& e >)
i=1

=1 k=M+1
=E Z (<éLe > <e : (3.3)
k=M+1

for every M > M,.

From Theorem 2 we have that Py (n~1/2 37 | &) converges in distribution to Py N. Hence it re-
mains to show that Qu(n~2 37| £)(and QuN) becomes small as M — oo. By Lemma 2 we also
have

k 2 n
o w2
E&lfg,[; <& e >) 54;E(<§,,e1 >)~. (3.4)
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Hence, it follows from (3.3) and (3.4) that

Z QMgl

En~! max
I<k<n

r 2
F max Z< e >
1<k<n Par ‘f” J
=

j=M+1

4n! Z ZE(< e >

j=M+1 i=1
=4n”' Y ElQuéll < e
i=1

A similar estimation holds for QyN. Let
n”%Z& PM[ %Zfz)*’QM[n 22‘51] and N = PyN +OQuN,

B . D
where N is a Gaussian random variable on H. From the above considerations we obtain PyN —
N as M- oo,n 23" & B Pun V2yn &)and Py(n™'2 T &) B PN, Hence, (3.2) holds,
i.e., the proof is completed ]

Theorem 5. Let (&, k € Z} be a strictly stationary negatively associated sequence of H-valued
centered random variables with E|&|° < . Let {a, k € Z} be a sequence of bounded linear
operators on H satisfying

Z llalgy < oo 3.5)
=

We define the linear process in a Hilbert space by Xy = 3.7 aéx-j.
If (3.1) holds, then

Zk1 kD
n

where N is a Gaussian random variable on H, T is defined in Theorem 4, A = 3.7, a; and A* denotes
the adjoint operator of A.

Proof: Let

= N(O,ATA™),

=0
It is clear that

S n= k
k=1
n {n-k n oo
= Zaj &t Z a; |
k=1 \j=0 k=1 \j=n—k+1

= S [kiajgk_,v}i i aj]fk.

k=1 \ jep=ktl
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Then

First we will prove

n™% max || - S4]| 5 0. (3.6)

1<k<n

In order to prove (3.6), we need only to show

n~t max Al 5 0 (3.7)
1<k<n
and
_1 P
n~? max ||B|| — 0. (3.8)
1<k<n

Using the Minkowski inequality, finite second moment, Lemma 3 and the dominated convergence
theorem

2 2

= n"'E max
1<k<n

n~'E max
1<k<n

j=1 \i=1

< n‘lE[Z ey max

k 00
Z (Z ajft—j]
=1 \ j=i

nk

Z&-]

|

! 2
Jnk
Z”a]”L(H) Emax Zfl _j
l 2

oo JAn
7 Nl [Z Eligi- Juz)

j=1 i=1

o 2
n! (Zna,-uum(jmﬁ] = o(1) (3.9)

j=1

which yields (3.7). Next,

k 00
B= Z[ Z aj]g,- (3.10)
J 1

i=1 \j=k—i+

k 00 k
So 3 Sads
j=k+1 =l

Jj=1 i=k—j+1

: By + Bs.
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Let p, be a positive integer such that p, — oo and p,/n — 0.
1
n"2 max ||Baflg
1<k<n
k

PN
1

i=

oC
i
< Z aj n”I max
24 Hlajllecn max

= |Bailln + 1B22llH.
From Lemma 3 and finite second moment we have

o 2
E|Ballf; < C(Z “aj”L(H}) (%) =o(1)

j=0

k
D&
i=1

oG
+ Z (1 n "- max
( “ L(H)) i<k<n

J=pa+l

|

and

0 2
ElBxlf} < C{ > lajl L(H)} = o(1).

J=pntl

By (3.11), (3.12) and (3.13), we have
It remains to prove

For eachm > 1 let

where b; = a;I{j < m) and

Then, for each m > 1

, p
Ly < ladllyy +--- + “am“L(H))n_%(“fl“H +- i) = 0

asn — oo.
¥Ye > 0 by Lemma 3 and finite second moment we have

PIL, — Lol > €) < € 2E|\L, — Lyl

k
< € *n'E max Z(aj =b)Ec+ -+ Emjit)

msksn

H

-
Z

k—j
<en'E max Z llajllean (Z &~ Zé‘}]
sks P

J=mtl Jj=1

693

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)
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r 2

ij

. 2
-2 -
< 4e [Z ||a,-||L(H)] n"'E max

R 1<k<n |{4
Jj=m+1 = H
(o] 2 n
< 166‘2[ >, ||a,-uum] n Y Bl
Jj=m+l1 j=1
" 2
< C[ > ”aj“L(H)] —0 as m— oo. 3.17)
j=m+1
Hence by (3.17)
P
”Ln - Ln,m” - 0. (318)

Using (3.16) and (3.18) we have (3.15). By (3.14), (3.15) and (3.10), we have (3.8). Therefore we
prove (3.6) and the proof is completed(see proof of Theorem 5 in Kim ez al. (2008)).

Finally, we consider the sufficient conditions that the sequence {X;} of H-valued linear process
satisfies the central limit theorem if the corresponding result for {&} is true. O

Theorem 6. Let {¢, k > 1} be a strictly stationary negatively associated sequence of H-valued
centered random variables with E||£,||* < oo and {a\} be a sequence of bounded linear operators on
H satisfying (3.5). Then

1 v, » 1 < D
— ) & 5 N(O,T) implies — » X; = N(O,ATA"),
Vi Vi

where N is a Gaussian random variable on H, A = Zj‘;o a; and A* denotes the adjoint operator of A.
Proof: The proof is similar to that of Theorem 5. O

Corollary 1. (Ko, 2006) Let {&:, k € Z} be a strictly stationary negatively associated sequence of
RY-valued random vectors with E¢, = © and Ell&1|? < oo and let {A ;) be a sequence of matrix such
that

DlAjl<oo, DTA;# Opas
=0 Jj=0

where for any d X d matrix A = (a;;), Al = ?:1 Z;i=1 la;j| and Q4x4 denotes the d X d zero matrix.
Define X; an RY-valued linear process of the form X, = Z;io Ajti_j. Then

Il . » 1 « D
— ) & - N@O,T) implies — » X, - N(O,T),
Vi & Vi
where N is a Gaussian random vector with covariance matrix T = (Z;’;O A)) F(Z;Zo A j)/ and T is

defined in (2.6).

Ezxample 1. let X; —u = Z‘]’-’;O a;é—; be a strictly stationary linear process in a Hilbert space,
where u is the unknown mean and {&;} is a strictly stationary negatively associated sequence of H-
valued random variables with E¢; = 0, E|)&|]> < oo and satisfying (3.1). Here we suppose that the
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linear operator a; are geometrically bounded, in the sense that there exist real constant b > 0 and
0 < p < 1such that |la;|| < bp/ for all j > 0. Then this process satisfies Theorem 5.

Note that this class of a linear process in a Hilbert space is a basic object in time series analysis
and contains a stationary Hilbertian auto regressive process.

Confidence Region: Suppose that one wishes to construct a confidence set for unknown mean u
in a Hilbert space, based on {X;} in Example 1, for which the probability of coverage is at least

1 -a(0 < @ < 1). To obtain confidence regions for 4, Theorem 5 is useful, that is, the following result
is useful :

nt (X, - p) 5 N(0,ATA"), (3.19)

where X, = n X e+ X,), N denotes a Gaussian random variable on H, g indicates convergence
in distribution, T is defined in Theorem 4, A = Z;‘;O a; and A” denotes the adjoint operator of A.
Based on (3.19), if ATA* is known and ATA* is nonsingular, then an asymptotic (1 — &) confidence set
for pis {6 : n(X, - 6) (ATA*)™/(X,, - 6) < x?__}, where X7_, is the upper 1 — a point of a chi-square
distribution.

Concluding Remark: In the future, we will attempt to obtain a new method of the proof of Theorem
5 by proving the following proposition: Let {&,,n > 1} be a strictly stationary sequence of H-valued
NA random variables. Assume that there exists a positive constant such that for every sequence of
linear bounded operators {d, k € Z} on H, and for every 0 < p < g < oo,

q q
E|[Y di&| <K ) lld)l? < oo. (3.20)
j=p i=p
Then
1 n n 2
-E ZX"_AZ&‘ -0 as n—o oo
n k=1 k=1
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