DOI QR코드

DOI QR Code

Influence of Operating Conditions on the Performance of a Oxy-fuel Combustion Reference Cycle

순산소 연소 기본 사이클의 작동조건 변화에 따른 성능해석

  • 박병철 (서울대학교 기계항공공학부) ;
  • 손정락 (서울대학교 기계항공공학부) ;
  • 김동섭 (인하대학교 기계공학부) ;
  • 안국영 (한국기계연구원 그린환경기계본부) ;
  • 강신형 (서울대학교 기계항공공학부)
  • Published : 2009.08.01

Abstract

Recently, there has been growing interest in the oxyfuel combustion cycle since it enables high-purity $CO_2 capture with high$ efficiency. However, the oxyfuel combustion cycle has some important issues regarding to its performance such as the requirement of water recirculation to decrease a turbine inlet temperature and proper combustion to enhance cycle efficiency. Also, Some of water vapour remain not condensed at condenser outlet because cycle working fluid contains non-condensable gas, i.e., $CO_2$. The purpose of the present study is to analyze performance characteristics of the oxyfuel combustion cycle with different turbine inlet temperatures, combustion pressures and condenser pressure. It is expected that increasing the turbine inlet temperature improves cycle efficiency, on the other hand, the combustion pressure has specific value to display highest cycle efficiency. And increasing condensing pressure improves water vapour condensing rate.

Keywords

References

  1. Dijkstra, J. W., Marel, J., Kerkhof, B., Zwaan, B., W,Weeda, M., Jansen, D., and Haines, M., 2006, 'Near zero emission technology for C02 Capture from power plants,' GHGT-8, Trondheim, Norway
  2. Kim, H. K., Kim, Y., Lee, S. M., and Ahn, K. Y., 2006, 'NO reduction in 0.03-0.2MW oxy-fuel combustor using flue gas recirculation technology,' the Combustion Institute, In Press, Corrected Proof
  3. http://www.ieagreen.org.uk
  4. Jericha, H., Gottlich, E., Sanz, W., Heitmeir, F., 2004, 'Design Optimization of the Graz Cycle Protoηpe Plant,' Trans. of the ASME, Vol. 126, pp. 733~740 https://doi.org/10.1115/1.1792699
  5. Jericha, H., Sanz, W., Gottlich, E., 2006, 'Design Concept for Large Output Graz Cycle Gas Turbines,' ASME Turbo Expo 2006, Barcelona, Spain, GT2006-90032
  6. Jericha, H., Sanz, W., Gottlich, E., Neumayer, F., 2008, 'Design Details of a 600MW Graz Cycle Thermal Power Plant For C02 Capture,' ASME Turbo Expo 2008, Berlin, Germany, GT2008 -50515
  7. Hustad, C., Tronstad, I., Anderson R. E., Pronske, R, E., Viteri, F., 'Optimization of Thermodynamically Efficient Nominsl 40MW Zero Emission Pilot and Demonstration Power Plant In Noway,' ASME Turbo Expo 2005, Nerada, USA, GT2005-68640
  8. Pronske, K., Trowsdale, L., Macadam, S., Titeri, F., 2006, Bevc, F., Horazak, D., 'An Overview of Turbine and Combustor Development For Coal-Based Oxy-Syngas Systems,' ASME Turbo Expo 2006, Barcelona, Spain, GT2006-90816
  9. Anderson, R. E., MacAdam, S., Viteri, F., Davies, D. O., Downs, J. P., Paliszewski. A., 'Adapting Gas Turbines To Zero Emission Oxy-Fuel Power Plants,' ASME Turbo Expo 2008, Berlin, Germany, GT2008-51377
  10. Aspen Technology, HYSYS, ver. 2006. 5
  11. Amann, J. M., Kanniche, M., Bouallou, C., 2009, 'Natural gas combined cycle power plant modified into an $O_2/CO_2$ cycle for $CO_2$ https://doi.org/10.1016/j.enconman.2008.11.012
  12. Kenneth Wark, Jr. 1995, 'Advanced Thermo- dynamics for engineers,' McGraw-Hill.inc, Chap. 9, pp. 329-342
  13. M. M. EI-Wakil, 1984, 'Powerplant Technology,' McGraw-Hill.inc., Chap. 6, pp. 233~235

Cited by

  1. A Study on the Model of Thermal Plume Flow in the Forest Fire vol.12, pp.1, 2009, https://doi.org/10.5293/KFMA.2009.12.1.007
  2. vol.12, pp.1, 2009, https://doi.org/10.5293/KFMA.2009.12.1.070
  3. vol.13, pp.1, 2010, https://doi.org/10.5293/KFMA.2010.13.1.063