Mushroom 형태의 EBG 구조를 집적한 마이크로스트립 패치안테나의 방사 특성 해석

Analysis of Radiation Characteristics of Microstrip Patch Antennas Integrated with Mushroom-like EBG Structures

  • 곽은혁 (숭실대학교 정보통신전자공학부) ;
  • 김태영 (숭실대학교 정보통신전자공학부) ;
  • 김부균 (숭실대학교 정보통신전자공학부)
  • 발행 : 2009.08.25

초록

유전상수가 10인 기판에 mushroom 형태를 가지는 EBG 구조를 전 방향과 길이 방향으로 집적한 패치안테나의 방사 특성을 체계적으로 해석하였다. 기판이 두꺼워질수록 표면파가 더 많이 발생하여 EBG 구조가 패치 안테나의 입력 임피던스와 방사 패턴에 미치는 영향이 커지는 것을 볼 수 있었다 기판 두께가 3.2 mm, 1.6 mm, 0.8 mm 인 경우 EBG 구조와 패치 중심 사이의 거리가 각각 0.4 ${\gamma}_0$, 0.2 ${\gamma}_0$, 0.1 ${\gamma}_0$ 이상 되어야 EBG 구조가 패치안테나의 입력 임피던스에 영향을 거의 주지 않았다. 기판 두께가 3.2 mm, 1.6 mm, 0.8 mm 인 경우 EBG 구조를 각각 2 주기, 2 주기, 3 주기 이상 집적하면 표면파가 억제되어 전방 방사가 향상되었다. EBG 구조를 길이 방향으로 집적한 경우와 전 방향으로 집적한 경우 EBG 구조가 패치안테나의 방사 특성에 미치는 영향은 비슷하였다.

Radiation characteristics of microstrip patch antennas integrated with mushroom-like EBG structures in all directions and length direction on a substrate with the relative dielectric constant of 10 are systematically analyzed. As the substrate thickness increases, the effect of the surface wave on the input impedance and radiation pattern of a patch antenna increases. The effect of EBG structures on the input impedance of a patch antenna is negligible when the distances between EBG structures and the center of a patch antenna are 0.4 ${\gamma}_0$, 0.2 ${\gamma}_0$ and 0.1 ${\gamma}_0$ for the substrate thickness of 3.2 mm, 1.6 mm and 0.8 mm, respectively. The forward radiation is improved due to the suppression of surface wave when the periods of EBG structures integrated are larger than 2, 2, 3 periods for the substrate thickness of 3.2 mm, 1.6 mm and 0.8 mm, respectively. The effects of EBG structures on the radiation characteristics of a patch antenna integrated with EBG structures in all directions and length direction are similar.

키워드

참고문헌

  1. Y. Rahmat-Samii and H. Mosallaei, 'Electromagnetic band-gap structures: Classification, characterization and applications,' in Proc. Inst. Elect. Eng.-ICAP Symp., Apr. 2001, pp. 560-564
  2. D. Sievenpiper, L. Zhang, R. J. Broas, N. Alexópolous, and E. Yablonovitch, 'High-Impedance electromagnetic surfaces with a forbidden frequency band,' IEEE Trans. Microwave Theory Tech., vol. 47, pp. 2059–2074, Nov. 1999 https://doi.org/10.1109/22.798001
  3. Coccioli, R., Fei-Ran Yang, Kuang-Ping Ma, Itoh, T., 'Aperture-coupled patch antenna on UC-PBG substrate,' IEEE Transactions on microwave theory and techniques, Vol. 47, no. 11, pp. 2123-2130, Nov. 1999 https://doi.org/10.1109/22.798008
  4. F. Yang and Y. Rahmat-Samii, 'Microstrip Antennas Integrated With Electromagnetic Band-Gap(EBG) Structures: A Low Mutual Coupling Design for array Apllications', IEEE Trans. Antennas Propagat., Vol. 51, No. 10, Oct. 2003 https://doi.org/10.1109/TAP.2003.817983
  5. Zeev Iluz, Reuven Shavit, and Reuven Bauer, 'Microstrip Antenna Phased Array with Electromagnetic Bandgap Substrate', IEEE Transactions on Antennas and Propagation, Vol 52, No 6, pp.1446-1453, June 2004 https://doi.org/10.1109/TAP.2004.830252
  6. Guan Chen, Kathleen L. Melde, 'Cavity Resonance Suppression in Power Delivery Systems Using Electromagnetic Band Gap Structures,' IEEE Trans. Advanced packaging, Vol. 29, No. 1, Feb. 2006 https://doi.org/10.1109/TADVP.2005.862654
  7. Shahparnia, S., Ramahi, O.M., 'Electromagnetic Interference (EMI) Reduction from Printed Circuit Boards (PCB) Using Electromagnetic Bandgap Structures,' IEEE Transactions on Electromagnetic Compatibility, Vol 46, Issue 4, pp.580 - 587, Nov. 2004 https://doi.org/10.1109/TEMC.2004.837671
  8. F. Yang and Y. Rahmat-Samii, 'Reflection Phase Characterizations of the EBG Ground Plane for Low Profile Wire Antenna Apllications,' IEEE Trans. Antennas Propagat., Vol. 51, No. 10, Oct. 2003 https://doi.org/10.1109/TAP.2003.817559
  9. T. Ueda, N. Michishita, M. Akiyama, and T. Itoh, 'Dielectric-Resonator-Based Composite Right / Left-Handed Transmission Lines and Their Application to Leaky Wave Antenna', IEEE Trans. Microw. Theory Propag., Vol. 56, No. 10, Oct. 2008 https://doi.org/10.1109/TMTT.2008.2003524
  10. R. Gonzalo, P. De Maagt, M. Sorolla, 'Enhanced patch-antenna performance by suppressing surface waves using photonic-bandgap substrates', IEEE Transactions on Microwave Theory and Techniques, Vol 47, Issue 11, pp. 2131 - 2138, Nov. 1999 https://doi.org/10.1109/22.798009
  11. Sergio Clavijo, Rodolfo E. D$\acute{i}$az, and William E. McKinzie, 'Design Methodology for Sievenpiper High-Impedance Surfaces: An Artificial Magnetic Conductor for Positive Gain Electrically Small Antennas,' IEEE Trans. Antennas Propagat., Vol. 51, No. 10, OCT. 2003 https://doi.org/10.1109/TAP.2003.817575
  12. 박재우, 김태영, 김부균, 신종덕, '유한한 정사각형 기판의 크기가 마이크로스트립 패치안테나의 방사 특성에 미치는 영향,' 전자공학회논문지, 제46권, TC편, 제2호 pp. 33-41, 2009년 2월