DOI QR코드

DOI QR Code

Identifying Significant Components of Structures for Seismic Performance Using FOSM Method

FOSM 방법을 이용한 내진성능 중요부재 판별법

  • Published : 2009.08.31

Abstract

The identification of significant structural components under seismic loading through a probabilistic approach is of interest to many structural engineers. The First-Order Second Moment method can be used to achieve this goal by estimating uncertainty in the seismic demand of a structural system induced by the capacity uncertainties of each structural component. Significant structural components are those to which the seismic demand of the structure is more sensitive than it is to other ones. The developed procedure demonstrated by a ductile reinforced concrete frame shows that it is computationally effective and robust in terms of identifying significant structural components.

구조 시스템을 구성하는 구조부재들의 상대적인 중요도를 판별하는 것은 성능기반 지진공학에서 매우 중요한 과정이다. 확률기법의 하나인 First-Order Second Moment 방법을 이용하여, 각 구조부재들의 불확실한 성능 때문에 발생하는 구조 시스템의 요구 성능의 불확실성을 예측할 수 있고, 이런 과정을 통해서 구조부재의 중요도를 판별할 수 있다. 특정한 구조부재의 불확실한 성능에 대한 구조 시스템의 요구성능이 민감할수록 그 구조부재의 중요도는 높아진다는 점을 이용하여 중요부재를 판별한다. 따라서 요구성능의 민감도가 상대적으로 큰 구조부재는 그렇지 않은 부재보다 더 중요하다고 할 수 있다. 개발된 중요부재 판별법은 연성 철근콘크리트 프레임의 중요부재를 판별하는 과정에 적용함으로써 방법을 검증하였고, 적용 가능성을 보여주었다.

Keywords

References

  1. Shinozuka, M., “Probabilistic modeling of concrete structures,” Journal of engineering mechanics division, ASCE, Vol. 98, No. 6, 1433-1451, 1972.
  2. Grant, L.H., Mirza, S.A., and MacGregor, J.G., “Monte Carlo study of strength of concrete columns,” ACI Journal, Vol. 75, No.8, 348-58, 1978.
  3. Mirza, S.A., and MacGregor, J.G., “Slenderness and strength reliability of reinforced concrete columns,” ACI Structural Journal, Vol. 86, No. 4, 428-438 1989.
  4. Frangopol, D.M., Spacone, E., and Iwaki, I., “A new look at reliability of reinforced concrete columns,” Structural Safety, Vol. 18, No. 2, 123-150, 1996. https://doi.org/10.1016/0167-4730(96)00015-X
  5. Lee, T.-H., and Mosalam, K.M., “Probabilistic fiber element modeling of reinforced concrete structures,” Computers and Structures, Vol. 82, No. 27, 2285-2299, 2004. https://doi.org/10.1016/j.compstruc.2004.05.013
  6. Chryssanthopoulos, M.K., Dymiotis, C., and Kappos, A.J., “Probabilistic evaluation of behavior factors in EC8-designed R/C frames,” Engineering Structures, Vol. 22, 1028-1041, 2000. https://doi.org/10.1016/S0141-0296(99)00026-7
  7. Ghobarah, A., and Aly, N.M., “Seismic reliability assessment of existing reinforced concrete buildings,” Journal of Earthquake Engineering, Vol. 2, No. 4, 569-592, 1998. https://doi.org/10.1142/S1363246998000253
  8. Shinghal, A. and Kiremidjian, A., “Method for probabilistic evaluation of seismic structural damage,” Journal of Structure Engineering, ASCE, Vol. 122, No. 12, 1459-1467, 1996. https://doi.org/10.1061/(ASCE)0733-9445(1996)122:12(1459)
  9. Structural Engineers Association of California (SEAOC), Vision 2000, Performance-based seismic engineering, SEAOC, acramento, CA., 1995
  10. Porter, K.A., Beck, J.L., and Shaikhutdinov, R.V., “Sensitivity of building loss estimates to major uncertain variables,” Earthquake Spectra, Vol. 18, No. 4, 719-743, 2002. https://doi.org/10.1193/1.1516201
  11. Baker, J.W., and Cornell, C.A., “Uncertainty specification and propagation for loss estimation using FOSM methods,” In Der Kiureghian, Madanat, and Pestana, editors, Proc. of ninth Int. Conf. on Applications of Statistics and Probability in Civil Eng., ICASP9, San Francisco, California, USA, July 6-9, 2003, Roteerdam, Millpress, 973-980 2003.
  12. Melchers, R.E., Structural reliability analysis and prediction, Wiley, Chichester, 1999
  13. Lee, T.-H., and Mosalam, K.M., “Seismic demand sensitivity of reinforced concrete shear-wall building using FOSM method,” Earthquake Engineering and Structural Dynamics, Vol. 34, No. 14, 1719-1736, 2005. https://doi.org/10.1002/eqe.506
  14. Gharaibeh, E.S., Frangopol, D.M., and Onoufriou, T., “Reliability-based importance assessment of structural members with applications to complex structures,” Computers and Structures, Vol. 80, No. 12, 1113-1131, 2002. https://doi.org/10.1016/S0045-7949(02)00070-6
  15. McKenna, F., and Fenves, G.L., “OpenSees Manual," Pacific Earthquake Engineering Research (PEER) Center, http://opensees.berkeley.edu, 2001.
  16. Vecchio, F.J., and Emara, E.B., “Shear deformations in reinforced concrete frames,” Structural Journal, ACI, Vol. 89, No. 1, 46-56, 1992.
  17. Mirza, S.A., Hatzinikolas, M., and MacGregor, J.G., “Statistical descriptions of strength of concrete,” Journal of Structural Division, ASCE, 105 (ST6), 1021-1037, 1979.

Cited by

  1. Probabilistic assessment of structural seismic performance influenced by the characteristics of hysteretic energy dissipating devices vol.14, pp.4, 2014, https://doi.org/10.1007/s13296-014-1202-2
  2. Simplified Estimation Method for Collective Uncertainty-Propagations of Hysteretic Energy Dissipating Device’s Properties pp.2093-6311, 2018, https://doi.org/10.1007/s13296-018-0050-x